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Abstract—Automotive software applications implement a va-
riety of control algorithms, with many of them being safety-
critical in nature. A typical design flow starts with modeling
these control algorithms using tools like MATLAB/Simulink.
However, at this stage, a number of assumptions, like negligible
sensor-to-actuator delay and instantaneous computation of the
controller software, are often made. In particular, the details
of the software implementation and the computing platform,
both eventually defining the timing properties of the applications,
are not accounted for. Such idealistic assumptions can cause a
significant deviation of the control performance compared to
what was proven at the modeling stage. This is usually addressed
with multiple design iterations, which are costly and may lead
to over-provisioned and thus poorly designed systems. In this
paper we attempt to address this problem by proposing a design-
and tool flow that integrates software- and platform-level timing
information into the high-level modeling stage. We outline our
proposed flow using concrete, industry-strength design tools.

I. INTRODUCTION

Many automotive platforms today consist of 50-100 elec-
tronic control units (ECUs) that are connected by a hetero-
geneous communication architecture using buses like CAN,
FlexRay and Ethernet. Such a platform runs several millions
lines of software code, implementing various control algo-
rithms spanning across safety-critical, driver assistance and
comfort-related domains. The design flow for such a system
starts with high-level modeling of the algorithms using tools
like MATLAB/Simulink. At this stage – as is common in
control theory – several idealistic assumptions, such as negli-
gible sensor-to-actuator delay and instantaneous and perfectly
periodic computation of the control law, are made. The control
performance of the final implementation is then estimated
based on these assumptions.

However, in such complex and distributed systems, the
assumptions made at the model level are often not true. For
example, the sensor-to-actuator delay of a distributed control
loop is usually subject to bus communication delay, jitter
due to arbitration, as well as jitter from scheduling effects
on the ECUs. Consequently, the performance of the actual
implementation deviates from the estimates, possibly violating
requirements that have been proven at the modeling stage.

The information that would allow for a better estimate is
only available later in the development process, when code is
generated from these models and deployed on the distributed
platform. This semantic gap between the high-level models
and their implementation is often identified during integration
tests, and fixed by going through several design iterations,
until the performance is sufficient. However, those iterations
are not only time-consuming, but also they leave the design

without any analytic backup, hindering certification. In partic-
ular, a scientific basis for integrating software- and platform-
level timing information into the high-level modeling stage is
missing, with legacy and domain experience currently being
the key influences. Software architectures like AUTOSAR are
also not addressing this gap, instead they introduce even more
abstraction of the processing platform.

On the other hand, elaborate tools modeling low-level plat-
form behavior and allowing for precise simulation or timing
analysis of distributed systems do exist, but little is known
about approaches that can extract their timing information
and use it in a meaningful way in the high-level models. In
particular, such an integration is missing for commonly used
tools like MATLAB and Simulink.

Closing the semantic gap would enable the automatic explo-
ration of mapping and scheduling of control tasks on ECUs,
and provide precise estimates of the final system performance,
backed up by formal analysis. This paper lays down the
blueprint of such a mechanism and presents the proof of
concept for the proposed approach using industry-strength
design tools, including Simulink [1], INCHRON Tool-Suite [2]
and AutoGen [3]. The broad steps in our proposed workflow
are as follows (see Figure 1):

1) Traditional MATLAB/Simulink modeling of the control
system followed by code generation. A control-theoretic
analysis provides bounds for possible sampling periods
and tolerable deadline misses, which is captured in formal
requirements to be fulfilled by the later implementation.

2) The control tasks are mapped onto ECUs in a chosen
platform, which is possibly shared with other applications.

3) Perform worst-case execution time (WCET) analysis of
each control task individually.

4) System-level timing analysis based on Real Time Calcu-
lus (RTC), accounting for platform-specific bus latency,
task scheduling and preemption strategies. All feasible
behavior of the distributed system is covered.

5) Automatic generation of timed automata models from the
RTC result. Models can be generated at various levels of
abstraction, matching the required level of precision.

6) Formally prove that the timed automata, and therefore the
final system, admit only those behaviors that guarantee
the control performance requirement of Step 1. For this
purpose we use the UPPAAL model-checker.

The primary contribution of this paper is to lay down the
foundations of the AUTOSAFE tool flow and present a proof-
of-concept. The remainder of this paper presents insights to
each of the above steps using a representative automotive study
as a test case.
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Fig. 1: AUTOSAFE Workflow (simplified figure only showing the verification parts; simulation omitted).

II. THE TOOL FLOW

Our overall tool flow, as shown in Fig. 1, consists of the
following primary components, A) a high-level model, code
generation and task mapping front-end, B) an architecture-
sensitive timing analysis engine, C) a back-end for automata-
based verification of timing properties and D) a back-
annotation mechanism of timing properties to the high-level
model.

A. From High-Level Specification to Task Mapping

The development process starts with a specification of the
functional behavior of the system. Towards this, the developer
may chose any suitable modeling framework or tool which can
generate an implementation of the modeled system in the form
of C code.

The system may consist of numerous interdependent, se-
quential or parallel tasks, interacting with each other to pro-
duce the desired behavior. Moreover, the system may be com-
posed from multiple independent task clusters. For example,
our approach allows simultaneous modeling and verification
of both an anti-lock braking system and an adaptive cruise
control, which do not have any interdependence, but may be
sharing resources, such as ECUs and buses. At this stage of
the development, neither the synchronization nor the commu-
nication method between those tasks has to be specified; only
their data flows.

After the functional modeling is complete, we generate C
code for each such task separately. Additionally, a formal
specification for each task is emitted, which is used later on
during the analysis. This can be seen as a set of desired
attributes that shall be achieved by the implementation. The
attributes of this specification depend on the nature of the high-
level model, and the properties that are verified. Examples are

the execution pattern of the task (periodic, sporadic, event-
triggered), task deadlines, or even a performance metric that
can be evaluated when timing data is available.

As a next step, the developer creates a model of the
distributed system architecture, which specifies the existing
ECUs, their processors and OS types, their interconnections
(e.g., FlexRay buses) and other architectural elements.

Finally, the developer decides for a mapping of the tasks
onto the ECUs, that is, the binding of the functional parts to the
architectural blocks. Naturally, it is possible to map multiple
tasks onto the same ECU, or to distribute interdependent tasks
over a network of ECUs, as often the case in automotive
systems. At the moment, this step takes place manually. An
automatic design space exploration is in principle possible by
iterating our entire workflow, see section II-D.

At this point, all the necessary information (platform defini-
tion, communication paths of distributed software, the actual
software implementation, etc.) is captured and available to
perform a detailed temporal and functional analysis of the
distributed system. In the next section, we explain how this
information is used to perform an arbitrarily precise timing
analysis of the chosen system.

B. Timing Analysis
The goal of the timing analysis is to obtain a complete pic-

ture of the end-to-end timing of the system. This includes both
the latency of computation (execution times, task scheduling,
interrupts, etc.) and the latency of communication (forming
messages, bus arbitration, transmission time, etc.).

The timing analysis consists of two steps: a) task-level tim-
ing analysis to obtain the worst-case execution time (WCET)
of each task in the system and b) system-level timing analysis
to compose the tasks, evaluate effects of sharing resources and
finally obtaining the end-to-end delay.
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Task-Level Timing Analysis: First, we compute the worst-
case execution time (WCET) of each individual task in the
system. The WCET of a task represents the maximum ex-
ecution time that the task takes to finish computation on the
specific ECU it is mapped onto, considering all possible inputs
and the architectural features of the ECU, such as caches and
pipelines. However, the WCET does not include delays due to
task-external factors, such as interrupts.

Existing approaches to computing the WCET predominantly
use integer linear programming and abstract interpretation.
These approaches analyze the machine (assembly) code of
each task for finding control flow and timing properties.
However, they often need manual inputs, e.g., specification
of loop bounds, and may not obtain a tight WCET bound.
To overcome these two limitations, we are working on a
new approach to obtain a tight WCET for each task, without
requiring manual inputs.

The central idea in our approach is to perform the WCET
analysis as close as possible to the source code, since data
dependencies and flow analysis are not obfuscated by archi-
tectural details, and yet we retain the temporal behavior from
the machine level, such as the instruction timing. Specifically,
we chose to perform the analysis using model checking on an
augmented version of the C source code.

For each task, we perform the following steps:
1) Cross-compilation of the C code for the target ECU to

which the task is mapped,
2) flow analysis on the binary to obtain basic blocks,
3) lifting of the binary control flow into the C code,
4) back-annotation of basic block timing to the C code,
5) slicing, acceleration, abstraction and (optional) overap-

proximation of the C code for WCET computation, and,
6) perform model checking for automatic deduction of log-

ical constraints and computation of WCET.
Whereas steps 1) – 2) are standard within WCET analysis

techniques [4], at step 3) we deviate from known paths. Here,
we first establish a mapping from the basic blocks as obtained
in the previous step, to the control flow of the C source.
However, control flow differences have to be expected. Even in
the simplest case, the compiler may have generated function
calls, jumps or loops in the binary that are not present in the
source code.

Such flow differences are translated back from the binary
to the source code, producing a new, augmented source code,
which captures the control flow of the task on the specific
target processor. In step 4), we then use the established
mapping and annotate the instruction timing from the basic
blocks in the source code, where a model checker can be used
to compute the WCET, similar to the approach in [5].

However, model checking would not scale, if all details in
the augmented C source were retained. Since we are only inter-
ested in the timing, it turns out that a lot of irrelevant details
can be removed. For example, all variables not influencing
the control flow can be removed. Also, the specific value of
variables might not be important, but only their sign, or coarse
range. Based on this strategy, we perform a slicing w.r.t. the
timing annotations and perform loop abstractions similar to [6].
Finally, we run the model checker on the sliced and abstracted

C code of each task, to find its WCET. In comparison to [5],
our approach for WCET estimation is more precise due to
the consideration of flow differences, and meanwhile more
scalable, due to the slicing and abstraction. Both of these
aspects become important in later stages of our toolchain,
where a WCET is needed, and in particular a tight one, i.e.,
with little pessimism. The details of the above ideas is the
subject matter of research paper we are currently working on
and are out of scope for this paper.

Once the WCET for each task is available, preemptions due
to other tasks mapped to the same ECU, the OS, as well
as communication delays (inter-process communication, bus
messages) between the tasks have to be considered. This is
presented below.

System-Level Timing Analysis: Based on the execution times
of the tasks, their interconnections, the stimulation (activation
pattern) of the tasks, their mapping onto resources, the schedul-
ing strategies and the communication protocols, the tool chron-
VAL from INCHRON, allows computing the timing behavior,
like upper and lower bound of the end-to-end latencies, of
the distributed system. This takes into account preemptions
by other tasks, the real transfer times and scheduling on
bus systems, but also effects like missed protocol slots and
execution windows.

The tool chronVAL is based on real-time calculus [7], a
method for schedulability analysis for distributed systems.
The simplified method is to obtain for each task an incom-
ing upper/lower arrival curve, describing the density of the
activations for the task, and the upper/lower service curves
describing the available capacity in terms of computation time.
Together with the internal behavior of the task itself, like the
WCET, it is possible to compute the remaining capacity and
the density of the outgoing activations (outgoing arrival curve)
for each task. The outgoing activations are then the incoming
activations for the successor task, and the remaining capacity
is the available capacity for the task with the next lower
priority. Finally, the incoming capacity for the highest-priority
task is usually the ideal capacity of the resource. For more
complex systems with other scheduling strategies, such as bus
protocols with blocking times, the schedulability analysis is
more complex, but the principle remains the same.

The mentioned curves are functions on time intervals, ex-
tracting the cumulated worst-case/best-case behavior over all
interval lengths. For example, an upper arrival curve returning
five events for an interval of length 10ms, means that it is not
possible to find any interval with a length of 10ms that has
more than five events. All these curves are described by a set
of triples {(∆t, n, s)}, where ∆t is an interval length, n is the
number of events or the amount of computation time and s is a
slope. To limit the number of elements required to describe the
curves, chronVAL uses an approximation when obtaining the
curves as described in [8] and [9]. That simple description that
captures all the possible behaviors including the worst-case
and best-case, allows an efficient schedulability analysis and
the computation of the required (end-to-end) response times.



4

C. Automata Generation and Formal Verification

The automata generation framework provides a mechanism
for analyzing the platform-level timing results as derived by
the tool flow, using established formal verification engines, so
that system-level properties w.r.t. control performance can be
derived, while taking into account the timing characteristics
of the implementation platform. The system-level timing anal-
ysis can only give a schedulability guarantee. Our approach
integrates the accurate timing data obtained from a low-
level platform model with the high-level platform model, and
through this enables performing functional verification with
full timing data. Thus, our approach can formally verify end-
to-end functional properties which depend on the platform
timing behavior.

The timing analysis phase, as discussed earlier, helps in
abstracting out the low-level timing details of the platform
(latency, scheduling policies, etc.) resulting in RTC curves
which capture task-level arrival and service patterns. The anal-
ysis also provides task-level worst-case response time (WCRT)
information. For checking whether the timing constraints are
consistent with the planned end-to-end properties that serve
as indicators of control performance, a representative timed
transition system of the implementation is synthesized for
model checking using UPPAAL [10]. The generation of such
a template model requires the synthesis of the following set of
parallel timed automata:

1) A pair of synchronizing timed automata to generate the
events within the RTC arrival bounds for every task.
For generating events which satisfy periodic RTC arrival
curves, we use a modified version of the method discussed
in [11]. Our method can handle conjunctions of RTC
constraints by generating the arrival curves on-the-fly for
such complex constraints, to include any arbitrary set of
arrival curves, both periodic and aperiodic.

2) A pair of timed automata which keeps track of the
minimum and maximum service available for a task in
a resource as per the RTC service curves. The minimum
and maximum service available at any instant are stored
as a global shared variable, which can be accessed by
other automata.

3) A task automaton which keeps track of the task gen-
eration, execution and completion. It also ensures the
conformity of the task with the timing constraints.

4) A scheduler automaton which releases the generated task
from the task automaton in a resource according to a
scheduling policy.

5) A resource automaton which simulates the resource usage.
Resource refers to the processing and communication
nodes in the system. It can be a processor, an ECU or a
bus. The resource automaton synchronizes with the task
automaton and the scheduler automaton.

6) An observer automaton which quantifies the parameters
in the functional property to be verified.

The basic idea for this kind of framework to simulate
the system is similar to the work reported in [12]. The set
of automata we need to construct depends solely on the
type of property we want to verify. For example, in order

to verify some end-to-end functional property, we consider
only the tasks associated with the property to be verified.
The system-level timing analysis gives us the RTC bounds
for input arrival and output completion of the task set under
question. The process of RTC generation abstracts out the other
tasks by considering their effects when generating the bounds.
Using the RTC bounds as derived, we simulate the event
generation automata, service automata and the task automata
for the candidate tasks. This method of abstraction helps us to
effectively tackle state space explosion, without compromising
on the accuracy of the model.

The level of detail needed to represent the tasks and re-
sources can be varied as per the property to be verified. The
simplest case will be to consider the resource as a node,
without considering the internal architecture of the processing
unit. But if there are properties that directly refer to the internal
architecture of a processing node, then we have to model
the internal architecture of that processor as a set of timed
automata. The worst case in our method occurs when we have
to verify a property for which we will have to simulate the
entire architecture as it is. In this case, the general problem of
state space explosion still occurs and cannot be avoided.

A crucial outcome of our method is that we are able to
give formal guarantees for functional correctness, even with
deadline violations. In general, formal verification tool flows
are often conceived to work under the assumption that all tasks
meet their deadlines. In our method, we are generating RTC
bounds for task arrival and completion. Some of the patterns
within these bounds cause deadline violations for the tasks.
The system-level timing analysis is not affected by these dead-
line violations. Hence, when we perform formal verification for
properties over these RTC bounds, the guarantees are obtained
for the entire set of task execution patterns, including the ones
for which there exists some amount of deadline violations.

D. Closing the Loop
The overall tool flow initiates a design process with a

high-level specification, followed by code generation, platform
mapping and subsequent timing analysis which augments the
model with timing bounds. As discussed, a timing-annotated
system description is translated to a network of timed automata
and model-checked for property verification. The properties
are derived from some desired control performance criteria as
mandated by the designers. The satisfaction of the properties
acts as a formal guarantee provided by the tool flow. Otherwise,
the model checker reports a counterexample in the form of a
candidate scheduling trace which violates the property. In such
cases, the platform is simulated with the counterexample trace.
This helps to deduce whether the counterexample is actually
a feasible one. Since the RTC data used as input excitations
are approximations of actual execution patterns, they do admit
such spurious counterexamples in the real system. In case
such spuriousness can be inferred about a counterexample,
respective RTCs may be modified to eliminate it. Subsequently,
the entire tool flow is re-executed like a Counterexample
Guided Abstraction Refinement (CEGAR) loop [13]. As of
now, in our tool flow, the process of elimination of spurious
counterexamples is not automated.
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Fig. 2: Anti-lock braking system with distributed sensors and
controller.

If the iterative method as discussed above fails to satisfy
a target property, relaxed versions of the original target are
derived in a methodical manner, and the verification flow
is repeated. The amount of relaxation required by a target
property in order to ensure a satisfiable verification run actually
provides an important feedback to the designers, in the form
of how near the present design is w.r.t. some target control
performance.

III. TOOL INTEGRATION

In this section, we explain the implementation of our method
using an illustrative example. We consider a version of an
anti-lock braking system. The system has two sensors for
measuring wheel speed and linear acceleration of the car. The
sensing is done on individual sensor ECUs and the sensor data
is communicated over a common bus to a controller ECU,
see Fig. 2. The controller ECU evaluates the sensor data, and
computes an optimal setting for the brake pressure. Towards
that, the controller has to estimate the current amount of tire
slip based on the wheel speed and the car deceleration, and
then regulate the brake pressure to keep the slip at an optimal
value (usually 20%).

One of the performance requirements of this system is, that
the car shall stop within a certain distance when the brakes
are fully applied. The critical variable in this system is the
estimated tire slip. Naturally, when the sensor data is poorly
synchronized, then the estimate is less accurate, leading to
suboptimal control actions. The observable result is a longer
stopping distance. Therefore, in order to provide a formal
guarantee that the requirement can be fulfilled, the timing
behavior of the implementation has to be fully known. In the
following sections we explain how our approach enables to
derive the timing behavior of the distributed system, and how
we formulated and verified a formal property representing the
mentioned performance requirement.

A. From High-Level Specification to Task Mapping
Whilst our approach in principle works with any high-

level model for which some tool can generate source code,
we demonstrate it with the example of a control algorithm

that – as oftentimes the case – was being modeled in MAT-
LAB/Simulink.

The anti-lock braking system was modeled with four blocks
(Fig. 3a, from top to bottom): (1) acceleration sensor, (2) con-
troller, (3) wheel speed sensor and (4) car simulation. From
those blocks, the car model is only meant for performance
analysis of the controller, and not supposed to be implemented
in the real system. Additionally, we did not fully model the
sensor blocks, since reading sensors is usually a manually
written code, which at this stage of the design had not been
done, yet. Instead, the sensor blocks simply pass through the
respective variables from the car simulation.

A control performance analysis in MATLAB/Simulink could
be used to compute the effectiveness and stability of the (ideal)
control loop. However, in this high-level model, we are yet
lacking information about the timing of the implementation,
and it is well-known, that jitter and latency can deteriorate
the control performance. Though, if the control designer had
a guarantee on the end-to-end timing in the system, then he
could derive the control performance of the implementation.

One way around this, is to let the control engineer specify
timing requirements for the implementation, and make sure
that the implementation follows them. Usually, this would
entail specifying a relative deadline for each task, i.e., the
maximum time that the task may take to complete com-
putation. However, there are two problems: First, we are
dealing with a network of tasks, where platform timing, such
as communication delays, also have to be considered, and
second, in a traditional control system, the deadline must never
be violated to guarantee performance, which often results in
overdimensioned hardware.

Our workflow addresses both of these problems by allowing
to formulate timing requirements that are referring to the
distributed system, which moreover permit specifying complex
properties beyond simple deadline violations.

In the case of the anti-lock brake, we formulate a property
that allows for occasionally “poor” sensor synchronization and
still can guarantee the desired control performance, resulting
in a more resource-efficient implementation than traditional
designs. As mentioned before, the critical, performance-driving
variable is the estimate of the tire slip, whose quality depends
on the merit of sensor data synchronization. Therefore, we can
translate the performance requirement into conditions for the
sensor data. The data itself is timestamped, hence, depending
on when the sensor data arrives at the controller, it can be
classified as either fresh or stale, depending on some pre-
specified tolerance threshold.

The control engineer can then quantify the required fresh-
ness in terms of an (m, k)-firm deadline [14] for the data.
That is, he can require that the data is fresh at least m out of
k successive runs, whereas the relation from [15] is used to
translate the control performance requirement into the values
of m and k.

Next, the control engineer uses Simulink’s Embedded Coder
to generate a C source code for the controller task, whilst in
parallel the formal properties of the design are exported, such
as the required (m, k)-firm property [14], as well as the periods
of the controller and sensor tasks.
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(a) Functional high-level model in Simulink. (b) Platform modeling and task mapping in
INCHRON Tool Suite.

(c) Timed automata in UPPAAL during the verification.

Fig. 3: The anti-lock braking system at various stages in the workflow.

Finally, the specification of the platform and the mapping
of the tasks onto the platform can be done either in Enterprise
Architect, or in INCHRON Tool Suite. For both cases, we
developed a pre-defined set of commonly used building blocks
for ECUs, buses and so on, which can be easily instantiated
and tuned, similar to the blocks in Simulink. Towards this,
Enterprise Architect was extended by a profile, which also
allows exporting the Enterprise project to INCHRON Tool
Suite. The platform definition and mapping using INCHRON
Tool Suite are shown in Fig. 3b.

B. Timing Analysis
Task-Level Timing Analysis: Each generated source code
contains a step-function, which has to be invoked periodi-
cally with the respective task period. Consequently, the WCET
of the individual tasks are the longest possible execution times
of the respective step functions.

For the sensor tasks, which are not yet fully implemented,
we allocated an execution time budget by specifying some
WCET values. Later during the design, their actual WCET
can be obtained similar to what is shown in the following for
the controller task. The WCET for our controller task was
obtained as (cmp. §II-B):

1) Cross-compiling the C code with the target’s gcc,
2) using newtool to analyze the resulting binary for basic

blocks and determine their execution times,
3) using newtool to find the flow differences between binary

and source code and translating the differences back to
obtain an augmented source code,

4) using newtool to back-annotate the execution times into
the augmented source code,

5) using AutoGen [3] to perform slicing and abstractions
w.r.t. timing and

6) using cbmc [16] to compute the WCET value.
Where newtool is currently under development.

To include other effects, such as the communication delay
between the sensor tasks and the controller task, we need to
find the worst-case latency of the bus between them, as well
the scheduling effects on the ECU. That system-level timing is
obtained using INCHRON’s chronVAL tool.
System-Level Timing Analysis: chronVAL uses real-time
calculus (RTC), as explained before, to compute the bounds
for both the execution times of all tasks including preemptions
and the bus communication. The result of the analysis are
arrival curves for all tasks and service curves for all processing
and communication resources in the system. Simple timing
properties, such as the worst-case reaction time (WCRT) of a
task, or an upper bound for end-to-end timing of the controller
tasks, can be read off the curves more or less directly. However,
more complex properties, such as the (m, k)-firm property in
our system that ensures a sufficient control performance of the
anti-lock brake, require further analysis. This is described in
the next section.

C. Automata Generation and Formal Verification

For our anti-lock braking system, the property we need to
verify is the (m, k)-firm bound on the freshness of the input
sensor values at the controller ECU. The freshness or staleness
is calculated as the difference between the time at which the
sensor data reaches (i.e., is processed at) the controller ECU
and the time at which it is actually captured by the sensor.
For this simple representative example, we discuss the basic
working principle of our automata generation framework, in-
cluding techniques for abstracting out intermediate subsystems
to avoid a state space explosion problem.
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Using the method as discussed in section II-C, the results of
system-level timing analysis are translated into a set of timed
automata models for UPPAAL [10]. Note that the property
under examination is not concerned with any architectural
event or any internal communication event. It does not take
into account any event concerning values of sensed variables,
but only refers to the timing of sensor data as processed by the
controller. Hence, for the verification run, we do not have to
generate an elaborate network of automata which captures the
details of the sensor ECUs, the bus and the controller. Instead,
our model only needs to capture the input sensor data and
the input to the controller, and the rest of the subsystems can
be abstracted with their timing effects being accounted for by
ChronVAL. Thus, our UPPAAL model consists only of:

1) Two pairs of synchronizing timed automata to generate
the two input sensor events as per RTC constraints given
by the arrival curves. This generates all possible combina-
tions of sensor arrival patterns satisfying the RTC bound.

2) Two task automata which keep track of when the two
input tasks have been generated by the synchronizing
automata. The automata also capture when the sensor task
has arrived at the controller based on the dependencies,
WCRT, BCRT and the RTC constraints given by chron-
VAL. We also add labels of freshness or staleness to every
instance of task in both automata.

3) The controller automaton, which simulates the periodicity
of controller execution without going into the details of
the architecture nor functionality. The controller is mod-
elled as a node and due to the simplicity of this model,
the observer is integrated into this controller automaton.
An observer is needed to simplify the queries that needs
to be asked to verify for the (m, k)-firm property.

The above network of automata is modelled in UPPAAL
and is shown in Fig. 3c. Our task automaton labels the task in-
stances that are generated as either fresh or stale. The controller
automaton executes periodically and it knows the freshness
or staleness of both the tasks at that executing instance. To
verify the (m, k)-firm property [14], the controller automaton
keeps track of a sliding window of length k, and updates the
value of m at every controller period. Here, m is the number
of tasks that are fresh in a window of k. This is how the
observer may be integrated into the controller automaton for
simple (m, k)-firm properties. During verification, we query
for reachability of m. For example, if (4, 5) is the (m, k)-
firm bound we need to verify, we query for the reachability of
!(m < 4) && (m >= 4). If this is reachable, then the tool
infers that the (m, k)-firm property is satisfied.

We have observed interesting results through this analysis.
The property we are considering is that for a sliding window
of k sensor tasks, at least m out of those k tasks are fresh.
The freshness is decided by the time threshold defined by the
designer. The sensor tasks arriving before this time threshold
are fresh. The initial property derived by the control engineer
is that, for a time threshold of 7 time units, at least 4 out
of 5 sensor tasks should be fresh, i.e., (4, 5)-firm should be
satisfied. Our analysis shows that (4, 5)-firm is not satisfied.
Then we search for any other relaxed combination of m and

k, where m <= k, which is satisfied for the same system
architecture. In our case, none of the m and k combinations
were satisfied. We found that, if we alter the requirement such
that freshness is defined with a relaxed time threshold of 8
time units, the target property of (4, 5)-firm is satisfied.

To summarize, in case of verification failure with a valid
counterexample, we first check whether a slightly relaxed
property holds. In that case, the designer can go for slight
changes in system architecture, e.g., change in sampling rate.
In the present scenario no nearby and relaxed property could
be satisfied. As it happens, in spite of trying different possible
sampling rates, neither the target property, nor its relaxed
versions could be satisfied. In this case, it requires a more
fundamental change in the definition of freshness in the control
law for satisfying the target property. The scenario as discussed
actually exemplifies the usefulness of the verification feedback
for the control designer.

IV. RELATED WORK

Overall approach: High-level design tools like Simulink
nowadays have an associated “Design Verifier”, which can
check high-level properties using back-end theorem provers, as
well as formal analysis engines like Polyspace [17]. However,
the properties being checked are not platform-aware, i.e., only
the high-level model is considered, without any underlying ar-
chitecture or executable task. Hence, the validation capabilities
of such commercially available control toolboxes are limited.
They can check for simple errors in the model, like possible
integer overflows, division by zero, unreachable logic etc. Also,
using the Simulink Design Verifier, violated assertions can be
identified by simulation only.

Existing end-to-end approaches, such as the CESAR
toolchain [18], either do not include a complete temporal
model, or only allow for simulation as means of verification
[19]. Again other toolchains, such as the combination of
ASCET and AbsInt Tools [20], focus on temporal properties,
but lack an integration with functional verification, e.g., cannot
provide performance guarantees of the high-level model. Most
existing tools, however, such as [21, 22], enforce a one-way
workflow, where the high-level model is successively refined
up to an implementation, but then there is no feedback to
the original high-level model. Most importantly, the temporal
behavior of such an implementation is just an end product,
with no handle for the designer. Consequently, our approach
stands out for its integrated coverage of both functional and
temporal verification goals, providing an industrial toolchain
that supports the entire development workflow for embedded
real-time control systems.

A novel approach proposed in [23, 24] integrates timing
models into functional analysis using hybrid automata, a
superset of timed automata, for formal verification. However,
the WCRT considered is far smaller than the actual WCRT
and it is assumed that when a task violates this smaller
WCRT, its execution is discarded. Also, in this approach, the
entire system needs to be modelled as a hybrid automaton
for verification, and this leads to a state space explosion for
complex models. There is also no feedback to the original
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high-level model. Moreover, their approach does not take
into consideration bus protocols and associated latencies for
timing analysis. Our approach does not have any restrictions
on the WCRT values and can give formal guarantees over
all possible execution traces. Also, our method allows for
abstraction of the system architecture during verification. This
inherently addresses the problem of state space explosion, even
for complex models. Model refinement is shown in [24], using
a simulation approach. Being a simulation-based approach, it
cannot give any formal guarantees. Our approach both allows
for model refinement and can also provide formal guarantees.
WCET analysis: An estimation of WCET at source level
using cbmc has been proposed in [5]. However, the authors did
not model the inevitable flow differences between binary and
source, which is why their approach has to over-approximate
the WCET. In contrast, our approach is not only more precise,
but also more scalable, due to the slicing and abstraction w.r.t.
timing.
Real-Time Calculus: The concept of RTC was firstly pro-
posed by Thiele [7], and was later extended by approximative
methods, as described in [8] and [9]. Those methods were
implemented and further developed in the chronVAL tool.
The problem of generating events from RTC curves has been
studied by Lampka [11] before. We refined that approach
in order to include any arbitrary set of arrival curves, both
periodic and aperiodic.

V. CONCLUSION AND FUTURE WORK

The presented work introduces a tool flow for design and
verification of embedded control solutions, taking into account
the control-theoretic, software-centric, as well as platform-
level design factors in a sound and integrated manner. In
general, the problem of co-design for real-time control requires
analysis and optimization skills from multiple disciplines,
like control design, real-time analysis, as well as formal
verification. The tool flows available in each of these realms
are typically lacking interface points between each other, and
thus are inhibiting a comprehensible and effective feedback
between the disciplines. The result is a non-holistic system
design that often only attains a suboptimal level of performance
and efficiency.

With the presented workflow, it becomes possible for a
control designer to specify the control law, for an embedded
systems engineer to come up with an implementation mapping,
for a verification engineer to check for some target control-
theoretic property, without any of them requiring to work
outside their own area of expertise. With our effort, we
automated the transformation of the design problem across the
respective domain boundaries, enabling an integrated approach
to a system design with optimized performance and efficiency.

In the present status of the verification engine, the generation
of spurious counterexamples is not prevented in subsequent
runs by modifying the RTC constraints automatically. Such
refinements in the CEGAR loop at the moment require manual
intervention. Automating this segment of the tool flow is a part
of future work.
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