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Abstract

Image-based control (IBC) systems are increasingly being used in various domains including au-
tonomous driving. The key challenge in IBC is to deal with high computation demand while
guaranteeing performance and safety requirements such as stability. While modern industrial het-
erogeneous platforms, such as NVIDIA Drive, offer the necessary compute power, application
development on these platforms with performance and safety guarantees is still challenging. Al-
ternative time-predictable platforms are not yet in widespread use.

A typical design flow for IBC systems consists of three distinct elements: (i) mapping tasks
onto platform resources; (ii) timing analysis, consisting of task-level worst-case execution time
(WCET) analysis and application-level analysis to obtain worst-case performance bounds on
aspects such as latency and throughput; (iii) controller design using the obtained performance
bounds, ensuring performance and safety. While such a three-step design process is modular in
nature, it usually leads to over-dimensioned systems with sub-optimal performance, because task-
and/or application-level timing bounds are pessimistic.

We present a scenario- and platform-aware design flow for IBC systems that exploits frequently
occurring workload scenarios to optimize performance. For industrial platforms, where tight
task-level WCET bounds are difficult to obtain, we moreover propose to use frequently occur-
ring task execution times instead of WCET estimates to obtain tight application-level temporal
bounds. During controller design, we then optimize performance and guarantee stability by iden-
tifying appropriate system scenarios and by designing a switched controller that switches between
those scenarios. We illustrate our method considering a predictable multiprocessor system-on-
chip platform - CompSOC. We validate the proposed method using hardware-in-the-loop (HiL)
experiments with an industrial heterogeneous multiprocessor platform - NVIDIA Drive PX2 -
considering a lane keeping assist system (LKAS). We obtain an improved control performance
compared to state-of-the-art IBC design.
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Figure 1: An image-based control (IBC) system: block diagram

1. Introduction

Image-Based Control (IBC) systems are a class of data-intensive feedback control systems
whose feedback is provided by image-based sensing using a camera. Data-intensive feedback
control systems are common nowadays due to advancements in cyber-physical systems (CPS) [1].
IBC systems have become popular with the advent of efficient image processing algorithms and
low-cost CMOS cameras with high resolution [2]. The combination of the camera and the image
processing algorithm gives necessary information on parameters such as relative position, geom-
etry, relative distance, depth perception and tracking of the object-of-interest. Applications of
IBC are found in robotics [2], autonomous vehicles [3, 4], advanced driver assistance systems
(ADAS) [5], electron microscopes [6], visual navigation [7] and so on.

As illustrated in Fig. 1, a classical control implementation sequentially and periodically exe-
cutes the sensing task, control compute task and actuating task. In an IBC system, the sensing
task has a long, variable execution time and incurs a long sensing delay. Variability in execution
time may occur due to variation in image-processing workload and/or in the platform load caused
by other applications. The key challenge is to deal with this high dynamic computation demand
while guaranteeing performance and meeting safety requirements such as stability.

IBC applications are nowadays usually implemented on some heterogeneous multiprocessor
platform that may be shared with other applications. A typical design flow for IBC applications
is composed of three distinct elements: (i) mapping tasks onto platform resources, which may be
done manually or (semi-)automatically; (ii) timing analysis, consisting of task-level execution-
time analysis and application-level analysis to obtain worst-case application-level latency and
throughput bounds; (iii) controller design ensuring performance and safety guarantees taking into
account task- and application-level temporal bounds. A typical flow abstracts variable task exe-
cution times through WCET estimates. These are often overly conservative, because of image-
dependent workload variations and/or difficult to predict platform timing. This leads in turn to
loose application-level timing bounds which hampers controller design. The resulting IBC system
has sub-optimal control performance and is often over-dimensioned.

Fig. 2 illustrates a standard IBC implementation on a single processing core. A camera cap-
tures image frames with a period fh, referred to as the frame rate. The frame rate determines the
number of image frames that arrive per time unit, e.g., frames per second (fps). Typically, the cam-
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Figure 2: Illustration of classical IBC system implementation considering worst-case scenario. (S: sensing and image
processing, C: control computation and A: actuation, see Fig. 1.)

era frame rate is much higher than the rate at which the frames can be processed on a single core.
Pessimistic task-level WCET estimates and application-level analysis result in over-allocation of
processing resources for the worst-case workload and idling for non-worst-case workloads (to
keep the sampling period constant). This leads to a long sampling period h. With one processing
core, we can only process every third image frame in this example. This results in sub-optimal
control performance.

We present a model-based Scenario- and Platform-Aware Design flow (SPADe) for multi-
processor IBC systems that exploits parallelization of the sensing task and frequently occurring
workload scenarios to optimize performance. For industrial platforms, where tight task-level
WCET bounds are difficult to obtain, we moreover propose to use frequently occurring task exe-
cution times instead of WCET estimates to obtain tight, though possibly no longer conservative,
application-level temporal bounds for workload scenarios. For controller design, we identify ap-
propriate system scenarios [8] that take into account platform mapping and controller performance
for specific workload scenarios. Each system scenario corresponds to a specific sampling period.
IBC performance is then optimized and stability is ensured by designing a switched controller that
switches at run-time between system scenarios. Scenario-Aware Data Flow (SADF) [9] is used
as a model of computation to capture parallelized (workload and system) scenarios and for timing
analysis.

Predictable platforms, such as CompSOC [10] and PRET [11], provide predictable tight
WCETs for individual tasks in an application. Further, the composability property of such plat-
forms ensures that other applications sharing the platform do not interfere with the application
under consideration. The WCET variations of a task execution on predictable platforms is mainly
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due to the image workload variations. These properties make predictable MPSoC platforms suit-
able for model-based design. We develop and illustrate our SPADe approach for the predictable
and composable interference-free CompSOC platform.

We further apply our method on the industrial NVIDIA Drive PX2 platform. Industrial hetero-
geneous platforms provide high compute power with support for extensive parallelization that is
typically needed for data-intensive applications. However, such platforms are closed-source and
use operating systems (OSs) that result in high variations in execution times of application tasks
mapped to the platform. An ensuing challenge is that the application timing is difficult to predict.
Derived task-level worst-case execution time (WCET) estimates are overly pessimistic. Model-
based approaches using these pessimistic WCETs leed to pessismistic application-level perfor-
mance bounds. This potentially compromises control performance and may lead to resource over-
provisioning. However, task execution time distributions due to workload and platform-dependent
variations can be statistically analysed from observed data, e.g. as a PERT distribution [12] (il-
lustrated in Fig. 2). Such a distribution allows to classify the most frequently occurring task
execution times. Using those execution times give tighter, though possibly no longer conservative
application-level performance bounds. SPADe copes with possible timing analysis violations in
the (switched) controller design. Using SPADe, we perform model-based design-space exploration
(DSE) for an industrial setup over resource utilisation, quality of control and energy consumption
to obtain Pareto-optimal system configurations at design time. We consider the concrete case
study of a lane keeping assist system (LKAS) implemented on the NVIDIA Drive PX2 platform,
sharing the platform with two other data-intensive applications - object detection and tracking and
automatic emergency braking.

Contributions: This paper extends [13] and [14] that introduce the SPADe flow for predictable
multiprocessor platforms and compare different controller design approaches. In the current paper,
we present SPADe, and in addition to [13, 14],

1. we compare SPADe with a state-of-the-art pipelined control approach [15] through simula-
tions for a predictable MPSoC platform - CompSOC. Pipelined control does not parallelize
the sensing but uses multiple cores to pipeline multiple sensing instances. We provide a
guideline when the SPADe approach is suitable with respect to the pipelined control ap-
proach.

2. we adapt SPADe targeting an industrial platform - NVIDIA Drive PX2. We show that we
can leverage the principles of predictable model-based (co-)design for industrial platforms
by carefully co-designing the image-processing implementation and the switched controller
design, using a system-scenario-based approach [8].

3. we validate the SPADe approach in an industrial setting using a hardware-in-the-loop (HIL)
experiment.

The rest of the paper is organised as follows. Section 2 presents related work. An intro-
duction to the embedded IBC modelling, design, and implementation is given in Section 3 and
the motivating lane keeping assist case study is briefly explained. The concepts related to the
scenario-aware data flow model-of-computation used in our approach are explained in Section 4.
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The problem statement addressed in our work is made precise in Section 5. The proposed scenario-
and platform-aware design (SPADe) flow is presented in Section 6 with simulation results includ-
ing a comparison with a state-of-the-art pipelined control design. The applicability of SPADe for
an industrial IBC system is presented in Section 7 with a hardware-in-the-loop validation on the
NVIDIA Drive PX2 platform. Conclusions and future work are summarised in Section 8.

2. Related Work

This work deals with an effective scenario- and platform-aware design flow (SPADe) for
image-based control systems and its instances for a predictable MPSoC and an industrial
platform. The key challenge in designing IBC systems is to deal with the long sensing delay due
to compute-intensive image processing. Relevant literature deals with the questions: What are
the relevant overall design approaches for such embedded control problems? What are the tech-
niques to deal with long delays in a loop? What are the relevant modeling and analysis techniques?

Design paradigms: Embedded control applications are typically designed based on the separation
of concerns principle between control theory and embedded systems disciplines [16, 17]. Here,
the control engineer operates at the controller-level and designs the controller for a strictly periodic
sampling interval with hard deadlines. Naturally, these assumptions impose hard requirements on
the task-level and application-level timing bounds of the IBC application. The embedded systems
engineer has to then guarantee these bounds at runtime by developing computational models and
appropriate scheduling mechanisms. This design philosophy leads to a relatively straightforward
design flow based on worst-case considerations that often restrict control performance and leads
to significant resource over-dimensioning.

Alternately, platform-based design methods were proposed in literature that emphasize co-
design of control and scheduling [18]. Here, the platform resource properties are taken into
account while designing the controller. Literature on such platform-aware control design is nu-
merous [16, 19]. Contract-based design [20] is another platform-based design paradigm for cyber-
physical systems where the interactions between the control theory and embedded design are de-
fined based on contracts.

From the embedded systems discipline, a system-scenario-based design approach [8] is pro-
posed where different behaviours (scenarios) of an application are explicitly considered to avoid
over-dimensioning or sub-optimal performance due to worst-case design. Identifying, character-
ising and modelling these scenarios and dealing with the run-time scenario transitions is specific
for each application and generally not trivial.

Our SPADe approach combines the concepts of the system-scenario-based design and
platform-based design methods for image-based control systems into a co-design approach that
jointly develops and optimizes the image-processing implementation and the controller design.
We classify the dynamic behaviours of the sensing application as scenarios. Though these scenar-
ios occur in some arbitrary and unknown order, each scenario can be individually analysed and
optimized using platform-aware design concepts taking into account controller performance for
each of the scenarios. The scenarios are then integrated in a switched controller design.
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Coping with long sensing delays: Strategies to cope with a long delay can be found in both con-
trol theory and embedded systems literature. Control engineers tackle a long delay using advanced
state estimation [21], robust design [22], predictive control [23], observer-based [1], and multi-rate
sampling [24] methods. These methods heavily rely on the system model and are vulnerable to
modelling errors with longer delays. Further, these approaches do not consider platform con-
straints like resource availability and mapping, or workload variations in image processing [17].

Embedded systems engineers aim to reduce processing latency by parallel implementations of
the algorithms using heterogeneous platforms having specialised hardware such as GPUs [25] and
FPGAs [26]. Specialised hardware is used for accelerating compute-intensive tasks such as lane
detection using a deep learning neural network, e.g. lanenet [27].

Pipelined control [15] is a co-design approach targeting homogeneous multiprocessor imple-
mentations. In pipelined control, the control loop is pipelined over multiple cores by creating
multiple instances of the sensing algorithm to reduce the sampling period and improve control
performance. It does not parallelize the sensing algorithm, it does not take into account workload
variations, and it does not easily generalize to heterogeneous platforms.

SPADe is a co-design approach targeting both heterogeneous and homogeneous multiproces-
sor platforms that explicitly considers workload variations, application parallelism, and platform
aspects to deal with long and variable delay.

System modelling: Model-based design [28, 29] approaches focus on designing applications
based on abstract models of application and platform such that the implementation is guaranteed
to behave with a predictable performance. Numerous models of computation (MoC) are available
from literature [9, 30, 31, 32]. SPADe does not depend on a specific MoC. It needs a MoC that
can capture the dynamic behaviours (scenarios) of the application, can analyse timing and has
support for platform-aware mapping analysis. We choose scenario-aware data flow (SADF) [9] as
our MoC as it inherently supports modeling scenarios and has tool support for timing analysis and
platform-aware mapping.

3. Embedded image-based control

We consider a setting for an IBC system as shown in Fig. 1. Our sensor is the camera module
that captures the image stream. The image stream is then fed to an embedded multiprocessor
platform at a fixed frame rate per second (fps), e.g. 30 fps. The tasks in our application - compute-
intensive image sensing and processing (S), control computation (C) and actuation (A) - are then
mapped to run on this multiprocessor.

3.1. LTI feedback control systems
We consider a linear time-invariant (LTI) feedback control system given by:

ẋc(t) = Acxc(t) +Bcu(t), (3.1)
yc(t) = Ccxc(t),

where xc(t) ∈ Rn represents the state, yc(t) ∈ R represents the output to be regulated and u(t) ∈
R represents the control input of the system at any time t ∈ R≥0. Ac, Bc and Cc represent the
system, input and output matrices of appropriate dimensions.
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Figure 3: An MPSoC platform with two processor tiles and a memory tile connected through a NoC.

We illustrate our work using the motivating case study of a vision-based lateral control system
model, commonly referred to as a lane keeping assist system (LKAS). Our camera sensor captures
the image stream at a fixed frame rate per second, e.g., 30 fps. The tasks in our LKAS - compute-
intensive image sensing and processing (S), control computation (C), and actuation (A) - need to
be mapped to run onto a multiprocessor platform. Quality of Control (QoC) needs to be optimized.
The state-space matrices of our LKAS derived from [33] are as follows,

Ac =


−10.06 −12.99 0 0 0

1.096 −11.27 0 0 0
−1.000 −15.00 0 15 0

0 −1.000 0 0 15
0 0 0 0 0

 , Bc =


75.47
50.14

0
0
0

 , Cc =
[

0 0 1 0 0
]
.

The five system states are - lateral velocity, yaw rate of the vehicle, lateral deviation from the
desired centerline point at look-ahead distance yL, the angle between the tangent to the road and
vehicle orientation, and the curvature of the road at the look-ahead distance. The control input
u(t) is the front wheel steering angle δf and the output yc(t) is the look-ahead distance yL.

3.2. Platforms under consideration
We consider predictable and composable MPSoC platform CompSOC [10] for illustrating the

proposed design flow. CompSOC offers a tile-based architecture [34] template (see Fig. 3). Each
tile has a processor Pi, memory M , communication assist CA and network interface NI (see
Fig. 3). The CompSOC platform offers a configuration with multiprocessors (processor tiles), in-
terconnections through a network-on-chip (NoC), and memories (memory tiles). In the considered
setup, each processor tile has a microblaze processor. The memory tile contains an external mem-
ory interface, e.g. DDRAM. The NoC provides interconnection between the tiles. The platform
is predictable with tight bounds on WCETs of task, and composable so that applications sharing
the platform do not interfere with each other. These properties makes the platform suitable for
the proposed model-based design flow. A scheduler performs (re)configuration and time-triggered
task execution.

The mentioned predictability and composability are usually not offered in an industrial plat-
form. We adapt the SPADe approach for the industrial platform NVIDIA Drive PX2 [35] to
demonstrate its applicability in an industrial context. It consists of 2 Tegra Systems-on-Chip
(SoCs) that communicate to each other via ethernet. Each Tegra SoC has 2 CPU clusters (see
Fig. 4). One cluster contains 4 ARM Cortex A57 cores and the other contains 2 NVIDIA Denver2
cores. The clusters are connected through a high-performance network interconnect. Each of the
Tegra SoCs also has 2 Graphical Processing Units (GPUs) - an integrated Pascal GPU (iGPU)
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Figure 4: NVIDIA Drive PX2 platform graph structure. LPDDR4 and DDR5 are the memory blocks. Each CPU
cluster also has internal instruction and data memory (not shown in the graph).

and a discrete GPU (dGPU) with maximum clock rates of 1.27 and 1.29 GHz respectively. The
iGPU has 256 CUDA cores and the dGPU has 1154 CUDA cores. The GPUs are accessed via the
respective CPUs in the SoC. The Ubuntu 16.04 LTS OS runs on the CPU platform.

A platform is modelled as a platform graph as shown in Fig. 3 and Fig. 4. A platform alloca-
tion determines the resources that are allocated to a task or to an application. Resources that are
allocated include: i) number of processors (or part of a processor, e.g. slots in a time-division mul-
tiplexing (TDM) frame); ii) type of processors, e.g. GPU, ARM cortex A57, Denver2, microblaze
and so on; iii) memory size - for local memory in a tile and/or shared memory, e.g. DDRAM,
LPDDR4; and iv) communication bandwidth.

3.3. Embedded implementation
Implementation of an IBC system involves the execution of three sequential tasks: sensing and

processing (S), control computation (C) and actuation (A). These tasks repeat; let the start and
finish times of the k-th instance be given by ts(.) and tf (.), respectively. The execution times of
Sk, Ck and Ak (the k-th instance) are given by,

ekT = tf (T
k)− ts(T k),

where T ∈ {S,C,A}. The interval between two consecutive executions of sensing tasks Sk and
Sk+1 is then the sampling period hk for the k-th instance. The time interval between the starting
time of Sk and finishing time of Ak is the sensor-to-actuator delay τ k for the k-th instance.

hk = ts(S
k+1)− ts(Sk), τ k = tf (A

k)− ts(Sk). (3.2)
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We consider a time-triggered implementation of tasks S, C and A. A camera captures the images
at discrete intervals, e.g. 30 fps, and the image frame arrival period fh is given by,

fh =
1

frame rate
; for 30 fps, fh =

1

30
s = 33.33 ms.

This means that the sampling period h needs to be an integer multiple of fh. Sensor processing is
followed by control computation and actuation operations which generally take a short and nearly
constant time for execution. A sensing operation takes much longer time, i.e.,

eS � eC + eA

where eS, eC and eA are the worst-case execution times of sensing and processing, control compu-
tation and actuation, introduced above. Moreover, ts(Ck) = ts(S

k)+eS and ts(Ak) = ts(C
k)+eC .

The total (worst-case) execution time of the control loop is then given by τt = eS + eC + eA.
The effective sensor-to-actuator delay τ and sampling period h are then given by,

τ = τt, h = d τt
fh
efh. (3.3)

We assume that the start of sensor data processing is aligned with the camera frame arrival and
the actuation is delayed to guarantee constant sensor-to-actuator delay. With sensor-to-actuator
delay τ and a zero-order-hold mechanism with sampling period h ∈ R, u(t) becomes piecewise
constant in the intervals t ∈ [kh+ τ, (k + 1)h+ τ ] for k ∈ Z≥0.

Image-processing workloads may vary, e.g., depending on image content. In Fig. 2, for ex-
ample, the number of features in an image determines the workload. Each workload scenario sk
is annotated with a pair (hk, τk) that models the sampling period and delay associated with it.
A zero-order sample-and-hold approach can then be used to discretize the system based on the
workload scenario sk. Eq. 3.1 can be reformulated as follows:

x[k + 1] = Askx[k] +B0,sku[k] +B1,sku[k − 1],

y[k] = Ccx[k] (3.4)

where,

Ask = eAchk , (3.5)

B0,sk =

∫ hk−τk

0
eAcsds ·Bc, B1,sk =

∫ hk

hk−τk
eAcsds ·Bc

In Eq. 3.4, we assume that u[−1] = 0 for k = 0. We define new system states z[k] =[
x[k] u[k − 1]

]T with z[0] =
[
x[0] 0

]T to obtain a higher-order augmented system as fol-
lows to obtain a delay-free state space:

z[k + 1] = Aaug,skz[k] +Baug,sku[k], y[k] = Caugz[k] (3.6)

where,

Aaug,sk =

[
Ask B1,sk

0 0

]
, Baug,sk =

[
B0,sk

I

]
, Caug =

[
Cc 0

]
. (3.7)
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0 and I represent the zero and identity matrices of appropriate dimensions. A check for control-
lability [36] is done for this augmented system. If the system is not controllable, controllability
decomposition is done to obtain a controllable subsystem. We can apply standard control design
techniques for the delay-free state-space model shown in Eq. 3.6.

3.4. Control law and control configurations
In view of the augmented system of Eq. 3.6, we use a state feedback controller u[k] of the

following form,

u[k] = Fskz[k] + Ff,skrref (3.8)

where Fsk is the state feedback gain and Ff,sk is the feedforward gain both designed for the work-
load scenario sk. rref is the reference value for the controller. The design of gains can be done
with state-of-the-art control design techniques such as linear quadratic regulator (LQR) or pole-
placement [36]. A detailed explanation of how we design the gains for our setting is explained
in [14]. Note that any other state-of-the-art control design technique can also be used for design-
ing these gains.

For each workload scenario sk, we then define a control configuration χsk as a tuple χsk =
(hsk , τsk , Fsk , Ff,sk).

3.5. Controller stability
At runtime, the workload scenarios are switching based on the image workload variations

and/or platform load. This switching behaviour can lead to system instability. Therefore, we must
guarantee stability of the overall system while improving Quality of Control (QoC).

Theorem 3.1. (Stability criterion [37]) Consider Aaug,sk to be discrete-time LTI systems. V (z) =
zTPz is the Common Quadratic Lyapunov Function (CQLF) of the systems Aaug,sk if there exist
P = P T > 0, Q = QT > 0 and P is the simultaneous solution of the discrete-time Lyapunov
equations,

ATaug,skPAaug,sk − P = −Q < 0. (3.9)

The existence of a CQLF is a sufficient condition for the stability of a system with switching
subsystems.

We transform the stability condition (Eq. 3.9) into Linear Matrix Inequalities (LMIs) to analyse for
the existence of a CQLF. The analysis equation, Eq. 3.10, is obtained by performing the following
operations: i) substitute Aaug,sk in Eq. 3.9 with Aaug,sk = Aaug,sk + Baug,sk ∗ Fsk , ii) apply Schur
complement, and iii) left- and right- multiplication by diag(P−1, I) and set Q = P−1.[

−Q QAT∗ +QF TskB
T
∗

A∗Q+B∗FskQ −Q

]
< 0, Q > 0 (3.10)

where A∗ = Aaug,sk , B∗ = Baug,sk for each scenario sk. If a solution exists, then the switching
subsystems are stable. The choice of scenarios need to be modifies if a solution does not exist. A
less aggressive mode with poorer performance is usually more likely to meet the stability condi-
tion. Failure to guarantee switching stability would result in a classical worst-case based design.

An alternate controller synthesis method has been proposed for this setting using a Markovian
jump linear system formulation in [14].
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3.6. Control performance: Mean square error (MSE)
The MSE is the mean of the cumulative sum of the squared errors, i.e.:

MSE =
1

n

n∑
k=1

(x[k]− rref )2

where n is the number of observations, x[k] is the value of the kth observation and rref is the
reference value. The MSE quantifies, in essence, how fast the output y(t) reaches the reference
rref . A lower MSE implies a better QoC.

4. Model of Computation for IBC

Our application is modelled using a model of computation (MoC) or a programming model that
allows timing analysis. Our model should capture dynamic behaviour and scenario-awareness.
This enables us to model and analyse execution time variations that happen at run-time due to
either image workload variations and/or platform load. We assume that WCET estimates of task
workloads are given for a platform or can be computed.

A MoC is required to compute the parameters relevant for the control design - the sampling
period h and the sensor-to-actuator delay τ . However, the challenge now is: How to accurately
determine h and τ at design time for a multiprocessor/heterogeneous platform implementation?
The choice of binding and scheduling of tasks on the platform determines h and τ .

4.1. Scenario-aware data flow (SADF)
We choose the scenario-aware data flow [9] as the formal MoC for our application as it enables

us to: i) model dynamic behaviour, analyse timing, and optimally map application tasks to the
platform for maximising the effective utilisation of allocated resources, ii) relate throughput of the
data flow graph to the sampling period, and thus combine data flow analysis and mapping with
control design parameters and QoC, and iii) to efficiently implement a run-time mechanism that
manages necessary dynamic reconfiguration between system scenarios.

A Scenario-aware data flow graph (SADFG) (see Fig. 5) is a tuple SADFG = (Σ, F), where:

• Σ = {si | si = (wi,Gi), wi ∈ W} is a set of scenarios being a set of pairs of workload
wi and their corresponding synchronous data flow graphs (SDFGs) Gi.

• The language F describes a set of infinite scenario sequences represented using ω-regular
expressions of scenarios si ∈ Σ [38].

An SDFG [39] is a tuple G = (A, C, e, r, i) where A is the set of actors, C ⊆ A2 the set
of channels, e : A → R≥0 returns for each actor its associated firing delay or execution time,
r : A × C → N>0 returns for each actor port its associated rate and i : C → N0 returns for
each channel its number of initial tokens. Actors of an SDFG may fire, consuming and producing
tokens according to the specified rates.

The SADFG for our LKAS IBC application is shown in Fig. 5. The sensing and processing al-
gorithm receives the camera image frames and detects the regions-of-interest (RoID) in the frames.
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Figure 5: LKAS SADF graph, assuming two allocated processors and hence two RoIP actors.

The detected regions-of-interest (RoI) can be processed in parallel on a multiprocessor platform.
The number of allocated processors for our application determines the number of RoI processing
(RoIP) actors in our model. In this case, we have two allocated processors and hence two RoIP
actors. The total number of RoI detected by RoID determines the workload wi, i.e., wi = y1 + y2.
The parameters y1 and y2 determine how many RoI need to be allocated to the individual proces-
sors and are the rates for the corresponding scenario si. Note that the sensor-to-actuator delay and
sampling period vary based on the value of y1 and y2. After processing the RoI, the data is merged
and the controller state (the lateral deviation yL in our LKAS case study) is computed by the RoI
merging (RoIM) task. The control algorithm (C) then computes the controller input u[k] (steering
angle δf in our LKAS case study) and feeds it to the actuation (A) task.

Each workload wi is associated with an SDFG Gi. An SDFG instance of Fig. 5 is obtained by
assigning values to parameters ei (the actor execution times) and yi. E.g., assigning y1 = 2, y2 =
3, ed = 5, ep = 10, em = 7× (y1 + y2) = 35, ec = 2, ea = 2 gives the SDFG for a workload of
5 RoI for mapping to two processors. The actors of Gi are Ai = {RoID, RoIP, RoIM, C, A}. The
channels of Gi, Ci, are shown as dependencies in the figure, and there is one (labelled) initial token
in the channel from actor A to RoID. The scenarios are defined based on wi and the parameters
that change for the corresponding Gi are y1, y2, and em = (y1 + y2) × 7. All other aspects of the
Gi are the same for all scenarios.

As rates in an SDFG are constant for each firing, it is possible to construct a finite schedule
(if it exists) that can be periodically repeated [39]. We call such minimal sequence of firings an
iteration of the SDFG. This is a sequence of firings that has no net effect on the token distribution
in the graph. The numbers of firings of each actor within an iteration constitute the repetition
vector ρ of an SDFG. For the SADFG graph in Fig. 5, for each scenario wi, the corresponding
SDFG Gi has repetition vector ρi =

[
1 y1 y2 1 1 1

]
, where y1 and y2 represent the firing

rates of the two actors RoIP shown in Fig. 5. A word from the SADF language F now specifies a
sequence of iterations of the corresponding scenario SDFGs.

The state-of-the-art SADF analysis uses (max, +) algebra [40]. The definitions needed for
our analysis are summarised in the following paragraphs. For detailed explanations and analysis
methods, the reader is referred to [38].

A time-stamp vector γ0 captures the availability times of (labelled) initial tokens. The produc-
tion times of the labelled final tokens for a scenario s are then captured by Eq. 4.1.

γ1 = Gsγ0 (4.1)

We assume that initial and final tokens are the same. Gs is the scenario (or state) matrix of s. For
12



the scenario SDFG corresponding to 5 RoI, introduced above, γ0 = [0] since there is only one
labelled initial token. Gs = [ed + max(y1, y2)× ep + em + ec + ea] = [74] and γ1 = [74] [0] =
[(74 + 0)] = [74].
Gs is used to determine the evolution of any scenario sequence. Labelled final tokens of one

scenario are the initial tokens of the next scenario execution. E.g., if sω is the infinite repetition of
scenario s, then the production times of the labelled tokens after the execution of the kth scenario
in the sequence is given by:

γk = Gsγk−1 = Gk
sγ0

For all s ∈ Σ, we can constructGs ∈ Ri(s)×i(s)
−∞ [41]. Here, i(s) is the total number of (labelled)

initial tokens (in all channels) for scenario s.
Further, we need to analyse the production times of outputs, i.e., the relevant information

produced, during an execution of a scenario sequence. Let the function m : Σ → N ∪ {0} map
each scenario to the number of outputs produced in that scenario. The output production times of
the scenario sequence sω can be computed as,

pk = Hsγk = HsG
k
sγ0 (4.2)

where pk is the time instance at which the kth output is produced and Hs ∈ Rm(s)×i(s)
−∞ is

the output matrix of the scenario s that captures the relation between the state vector and the
production times of m(s) outputs. Note that the first output is p0. The Hs matrices can be
computed in a similar way as the state matrices. For the LKAS scenarios, the output is produced
by the actor A, meaning that the output production time is equal to the production time of the
token on the channel from A to RoID. This means that Hs = [74] and the production time of the
first output p0 = [74] [0] = [74] (note thatG0

s = I , the identity matrix).
We quantify the throughput ν of a given scenario sequence of an SADFG by the average

number of outputs produced per time unit during the execution of that sequence. The throughput
of the SADFG for the scenario sequence s̄ is defined as follows,

ν(s̄) = lim
n→∞

sup
∑n

i=1m(si)

‖γn‖
(4.3)

where ‖γn‖ is equal to the maximum entry in the vector γn. For the infinite execution of the 5
RoI scenario SDFG, the throughput is 1

74
.

For the SADFG models in our SPADe flow we assume the following.
• Throughput is monotonic for our SADFG for different workloads. This is guaranteed by the

following:

1. The set of actors A is the same for all scenarios, i.e. Ai = Aj , where Ai and Aj are the
sets of actors of Gi and Gj respectively.

2. wi ≤ wj =⇒ ∀a ∈ Ai, e(Ai) ≤ e(Aj).

• The sensing task is not pipelined, i.e., the control is sequential. This is guaranteed by adding
a channel with only one initial token from the actuation task to the start of the sensing task
in our SADFG (as in the example).

13



4.2. System mapping and mapping configurations
System mapping refers to the binding of the application (modelled as an SADFG) to the given

platform (modelled as a platform graph) allocation. Note that for each workload scenario, we can
have multiple binding options on the given platform. The throughput of each of these binding
options would be different. We then need to find maximum throughput for a workload scenario,
given the platform allocation. The concrete problem is then to find the optimal mapping of a
workload scenario to the platform that maximises throughput. Any design flow that does optimal
mapping of an application to platform while maximising throughput can be used. We use the
SDF3 design flow [42] as it optimises the resource usage, memory load and communication load
for mapping, and embeds state-of-the-art throughput analysis techniques.

Optimal mapping of each workload scenario si (modelled as an SDFG Gi) to a platform graph
generates a binding-aware SDFG Gbi with the task execution schedule encoded in it. A mapping
configuration refers to the binding of a workload scenario on the platform and its execution sched-
ule represented as a binding-aware SDFG.

5. Problem statement

We can now make our problem statement precise. For a given application and a platform
allocation, design

1. mapping configurations,

2. controller configurations, and

3. a run-time reconfiguration mechanism,

such that we optimise

• quality-of-control (QoC) and

• resource utilisation.

6. Scenario- and platform-aware design (SPADe)

The SPADe flow comprises the following steps as shown in Fig. 6:

1. identify, model and characterise the frequently occurring workload scenarios that charac-
terise the dynamic behaviour of the image processing in the control loop;

2. find optimal mappings for these scenarios for the given platform allocation;

3. identify optimal system scenarios combining workload and mapping information and taking
into account constraints from the control domain, e.g. stability, and from the embedded
domain, e.g. camera frame rate;

4. design a controller with high overall QoC and guaranteed stability for the chosen system
scenarios; and

14
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Figure 6: Overview of steps in SPADe flow

5. a runtime reconfiguration mechanism for implementation.

As already stated, we illustrate the SPADe design flow considering the predictability and composi-
bility properties of the CompSOC platform. In the following, we detail the steps in the SPADe
design flow.

6.1. SPADe inputs
The inputs to our design flow are details of the IBC application, other applications sharing

the platform, given platform allocation for the IBC application and camera characteristics, e.g.
fps. These should be compliant with the application and platform models. Note that the details
of the other applications sharing the platform are not relevant for a composable platform such as
CompSOC.

6.2. Formal modelling: application and platform models
A typical IBC application model of an LKAS derived from [13] is shown in Fig. 5. The details

of this model have already been explained in Section 4. Task-level WCET profiling is required to
compute the WCETs on the CompSOC platform. The platform is modelled as a platform graph as
described in Section 3.2.

6.3. Analysis and Design
6.3.1. System mapping

We first describe the system mapping, i.e., binding and scheduling, of our IBC application
model to the platform. Fig. 7 illustrates three workload scenarios and their possible platform
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mapping. Fig. 7(a), (c), and (e) model the data flow graphs for different workloads and Fig. 7(b),
(d) and (f) show their corresponding mappings on two or three processor tiles Pi. Having more
processor tiles means that we can reduce h and τ by parallel execution of the sensing tasks.

System mapping refers to the mapping of application tasks (modelled as an SADF graph) to
the platform. An application can have multiple mapping options for a given platform allocation.
For example, in Fig. 7(c) and (e), the given platform allocation is two and three processor tiles
respectively (visible in the number of RoIP actors) for the same workload (5 RoI).

6.3.2. Timing analysis: relation between data flow analysis and control design
The inverse throughput of the mapped binding-aware SDF graph Gbi for scenario sequence sωi

gives the sensor-to-actuator delay τsi , i.e.

τsi =
1

ν(sωi )
, hsi = dτsi

fh
efh, (6.1)

where fh is the camera frame arrival period.
The timing parameters for the three mapped workload scenarios in Fig. 7 are obtained as

follows:

τi = ed + (
p

max
i
yi)× ep + em + ec + ea, hi = d τi

fh
e × fh.

Assume fh = 1
30

s for a camera with 30 fps and em = 7 × (
p∑
i

yi) where p represents the number

of allocated (or given) processors. Cost of communicating data between processors is assumed to
be part of the actor execution times ei; if meaningful, such cost could be made explicit, but for
simplicity, we do not do so. For our example shown in Fig. 7:

τ1 = 5 + 1× 10 + 7× (1 + 1) + 2 + 2 = 33ms,
τ2 = 5 + 3× 10 + 7× (2 + 3) + 2 + 2 = 74ms,
τ3 = 5 + 2× 10 + 7× (2 + 1 + 2) + 2 + 2 = 64ms,

and h1 = fh, h2 = 3fh, h3 = 2fh.

6.3.3. Control design
Once we obtain τsi and hsi for mapped workload scenario si, they are then used for the discrete-

time controller implementation as described in Section 3 and for designing the controller gains.
Further, the timing parameters are a part of the control configuration as defined in Section 3.4.
Any state-of-the-art control design method can be used for this design.

6.3.4. Optimal system-scenario identification
It is possible for multiple workload scenarios to have the same sampling period due to im-

plementation constraints like platform allocation and camera frame rate. For example, for the
workload scenario represented in Fig 7 (a) with (h1, τ1), the number of RoI, #RoI = 2. However,
even for the workload scenario with #RoI = 1 mapped to two processors, we would have the same
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Figure 7: Illustration of workload variations and platform mapping.

timing parameters (h1, τ1) since the tasks would have to execute sequentially on one processor.
Similarly, for the workload scenario in Fig 7 (c), we would have the same timing parameters for
#RoI 5 and 6.

A system scenario sk abstracts multiple workload scenarios si such that for hk = n × fh for
some n > 0, (hk− fh) < hi ≤ hk and τi ≤ τk, where fh = 1

30
s for a camera frame rate of 30 fps.

Only system scenarios are then considered for defining the control configuration and for platform
implementation.

6.4. Implementation and runtime reconfiguration mechanism
The optimal system scenarios are identified and their corresponding control and mapping con-

figurations are stored as a look-up table (LUT) in platform memory for runtime implementation.
During run-time, for every arriving input image frame, we compute the workload (e.g. through an
image pre-processing step) and choose the correct system scenario associated with this workload
from the LUT. Controller and mapping configurations of the corresponding system scenario are
loaded from the LUT. A scheduler then reconfigures the mapping, the time-triggering of the actu-
ation task and the controller gain parameters based on the chosen system scenario. The overhead
cost for this reconfiguration has already been considered in our analysis model as a time cost in
the start of sensing task (e.g. along with the actor RoID in Fig. 5).

6.5. Simulation results
The QoC provided by an IBC system depends on the nature of workload variation encountered

by the application resulting in different switching sequences. We simulate the LKAS controller
performance for various system scenario switching sequences with 2, 4, and 5 RoIs and sampling
periods h1 = 0.033s, h2 = 0.066s, and hwc = 0.100s for the corresponding system scenarios
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Figure 8: Controller performance: comparison of switching subsystems with worst-case swc

s1, s2, and swc, respectively, as shown in Fig. 8. We assume that there are 6 RoIs in the worst-
case. We observe that our switching designs of SPADe (plot (s1s2swc)

ω and (s2s2swc)
ω) have

better QoC (low MSE) than the worst-case sampling period based design (see plot (swc)
ω) in

Fig. 8. An example switching sequence is illustrated in Fig. 9(a). We see that the effective resource
utilisation for each sampling period is improved (with less idling) with respect to the worst-case
based design in Fig. 9(b).

6.6. Comparison with state-of-the-art pipelined control
We compare our SPADe approach with a state-of-the-art pipelined control approach [15]. For

fairness in the comparison, we use the same control design technique - LQR with integral action
- explained in [15] for SPADe. Further, we consider the same given platform allocation of two
processors.

Pipelined control design: We discretize the continuous-time system model in Eq. 3.1 with sensor-
to-actuator delay τ and sampling period h to obtain a delayed input system,

x((k + 1)h) = Adx(kh) +Bdu(kh− h), (6.2)

where Ad, Bd are the discretized state and input matrices respectively. Here, Ad = eAch and
Bd =

∫ h
0
eAcsBcds. The control input u(t) applied at t = kh uses h time units old sensing

information in any sampling interval kh to (k + 1)h due to the sensor-to-actuator delay τ . This is
reflected in Eq. 6.2 as the delayed input u(kh− h).

For brevity, the pipelined control delay and period is represented as τ and h in this subsection.
τ = d τt

fh
efh and h = τ

γ
, where γ is the number of processing cores. Note that in [15], there is a

strict criterion that the sampling period should be an integral multiple of fh and strictly periodic.
18
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Figure 9: Gantt charts for (a) switching sequence (s1s2swc)
ω , (b) corresponding worst-case design (swc)

ω , and (c)
pipelined control design used for comparison.

As such the τ should be relaxed based on γ. E.g., in our LKAS case, if τt = 0.084s, we get
τ = 0.100s and h = 0.050s for γ = 2. However, h = 0.050s is not an integral multiple of fh and
as such we have to relax τ so that τ = 0.100 + fh = 0.133s and h = 0.067s which is an integral
multiple of fh.

For designing the delayed control input u(kh − h), one design option is to transform the
system in Eq. 6.2 into standard non-delayed form and apply any standard control design technique.
Towards this, we define a new system state vector ẑ(kh) =

[
xT (kh) u(kh− h)

]T to obtain a
higher-order augmented system in the non-delayed form as follows:

ẑ(kh+ h) = Φdẑ(kh) + Γdu(kh) (6.3)
y(kh) = Cdẑ(kh),

where Φd, Γd, Cd are the augmented discretized matrices such that,

Φd =

 Ad Bd 0
0 0 I
0 0 0

 , Γd =

 0
0
1

 . (6.4)

0 and I represent the zero and identity matrices of appropriate dimensions. A check for control-
lability [36] is done for this augmented system. If the system is not controllable, controllability
decomposition is done to obtain a controllable subsystem.

System in Eq. 6.3 is in standard discrete-time form for which standard discrete-time control
design technique such as LQR [36] can be used. We use an LQR-based optimal state feedback
controller, with integral action for reference tracking, referred to in literature as linear quadratic
integral (LQI) control [43, 44]. The state feedback controller is of the form,

u(kh) = F lqr

[
ẑ(kh)
xi(kh)

]
, where xi(kh+ h) = xi(kh) + y(kh)− r(kh). (6.5)
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F lqr is the LQR state feedback gain designed for the state space considering the integral action as
given below, [

ẑ(kh+ h)
xi(kh+ h)

]
=

[
Φd 0
Cd 1

] [
ẑ(kh)
xi(kh)

]
+

[
Γd
0

]
u(kh). (6.6)

This control design replaces the earlier presented LQR control design for each scenario in SPADe.
We do so to have a fair comparison between different implementation strategies since the control
theory for pipelined control systems considers that τ and h are integral multiples of fh. However,
the controller design approach of SPADe can have any value for τ and hence is more flexible than
pipelined control. We adapt the pipelined control design applicable for τ ≥ h to SPADe approach
applicable for any τ < h by modifying Eq. 6.6 with parameters from Eq. 3.6:[

ẑ(kh+ h)
xi(kh+ h)

]
=

[
Aaug,sk 0
Caug 1

] [
ẑ(kh)
xi(kh)

]
+

[
Baug,sk

0

]
u(kh). (6.7)

Then we design the gain F lqr,sk for each SPADe scenario sk using the Eq. 6.5.

Comparison: For pipelined control, the total sensor-to-actuator delay τt = 5 + 6× 10 + 6× 7 +
2 + 2 = 111ms (since each pipe executes sequentially), the effective sensor-to-actuator delay =
τ = d τt

fh
efh = 133.33ms, and the sampling period h = τ

2
= 66.67ms for the given two processing

cores. The Gantt chart of the pipelined execution is shown in Fig. 9(c). As mentioned, for SPADe,
we use the same pipelined control design approach. For scenario swc, τt = 5+3×10+6×7+2+2 =
81ms so that τswc = 0.100 = hwc. Similarly, for scenario s1, τ1 = 0.033 = h1 and for scenario s2,
τ2 = 0.067 = h2.

The results of the comparison between the pipelined controller with respect to the SPADe
approach are shown in Fig. 10. Note that SPADe allows for parallelisation that reduces both
sampling period and sensor-to-actuator delay. However, pipelining only reduces the sampling
period.

The key observations are:

• The performance of the LQI controllers highly depends on the quality of controller tun-
ing [15]. We observe that the QoC of the pipelined controller is always in the range of QoC
between the worst-case design and the SPADe approach. Fig. 10 shows two different tun-
ings of the pipelined controller: plot pipelinedbc is tuned with the same control parameters
as scenario s1 and pipelinedwc is tuned with the same control parameters as scenario swc.

If we execute in a frequently occurring scenario, e.g., s1 (see plot (s101 swc)
ω in Fig. 10),

then we see that the control performance is better than the pipelined control. In this partic-
ular case, arbitrary switching between s1, s2, and swc is unstable. To meaningfully apply
the SPADe approach, we should have a frequently occurring scenario during run time, and
switching from this frequently occurring scenario to the worst-case should be stable, e.g.,
based on a dwell time criterion [37] (as shown for plots (s101 swc)

ω and (s102 swc)
ω in Fig. 10).

• SPADe performs better with a shorter τ when τ < h and other control tuning parameters are
kept the same. When τ1 < τ2 < h, the case with τ1 will have better performance than τ2 for
the same h. The actual performance improvement further depends on the system dynamics.
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Figure 10: Comparison between pipelined and SPADe approach

SPADe gives prominent advantages when the algorithm structure is known, i.e., the application
is a white/gray box and when there is scope for parallelisation. Pipelining works also when the
application is a black box and is not dependent on the parallelisation of the algorithm. However,
pipelining cannot be used when there are inter-frame dependencies for the algorithm, whereas
SPADe is not affected by inter-frame dependencies. Further, SPADe gives better results when
the application is executing in its frequently occurring scenario. Pipelining is better suited if the
application is frequently executing closer to its worst case. A brief comparison between SPADe
and pipelined approaches is illustrated in Table 1.

Table 1: SPADe vs pipelined: applicability criteria and comparison
Criteria SPADe Pipelining [15]

Algorithm should be white/gray box white/gray/black box
Degree of parallelisation should be high for better QoC independent (no parallelism)
Inter-frame dependencies independent (no pipelining) should not exist
Workload variations considered in design not considered
Platform independent (applicable for all) suitable mainly for homogeneous
Restrictions on h any multiple of fh multiple of fh; strictly periodic
Restrictions on τ none multiple of h and (γ × fh)
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Figure 11: (a) IBC system block diagram and the HiL simulator. (b) a snapshot of the HiL simulation environment in
webots. (c) LKAS using single camera. (d) multi-camera LKAS; c1, c2, c3 are the cameras.

7. SPADe for an industrial platform

7.1. Case study: multi-camera LKAS sharing the platform with other applications
We consider a concrete case study of a multi-camera lane keeping assist system (LKAS). The

goal of the LKAS is to steer the vehicle autonomously to follow the center line of a lane. Multiple
cameras are used since the field-of-view of a single camera is not sufficient to detect the lanes when
the vehicle has to make sharp turns, e.g., at a T-junction. Fig. 11(c) and (d) show the two different
scenarios in the LKAS system. The first scenario s1 (see Fig. 11(c) occurs when the vehicle is
navigating on a road with no sharp turns. In scenario s1, only one camera c1 needs to be active.
The second scenario s2 (see Fig. 11(d) happens when the vehicle needs to take a sharp turn. In this
case, all three cameras c1, c2 and c3 need to be active. During runtime the scenarios are detected
based on the following: i) when there is a lane detected by camera c1 and there is no request to
make a turn, the LKAS executes in scenario s1; ii) when there is no lane detected by camera c1
or there is a request to make a turn, the LKAS executes in scenario s2. Our multi-camera LKAS
is sharing the NVIDIA Drive PX2 platform with two other data-intensive applications - object
detection and tracking (ODT) and automatic emergency braking (AEB).

7.2. SPADe input: IBC application
7.2.1. Image sensing and processing (S)

The main stages in the compute-intensive image sensing and processing of an automotive IBC
system are the image signal processing (ISP) pipeline, environment perception and application-
specific rendering (if required) (shown in Fig. 12(a)). The ISP pipeline is generic for all IBC
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applications. Environment perception involves application-specific preprocessing, feature extrac-
tion and inference. Rendering refers to the display of relevant information on the dashboard or
screen of the vehicle and is application-specific. Below, we explain these stages in detail for our
LKAS system case study.

Image signal processing (ISP) pipeline The NVIDIA Drive PX2 comes with a Tegra configurable
ISP hardware and supports different image types - CUDA, OpenGL, NvMedia - and different pixel
formats - RAW, grayscale, RGB, Red Clear Clear Blue (RCCB), RGB alpha (RGBA), YUV. Nv-
Media is an NVIDIA proprietary framework which uses dedicated hardware blocks on the Tegra
SoCs for faster image processing. Algorithmic analysis of a closed-source proprietary ISP pipeline
is not possible. The stages common to generic ISP pipelines are explained in [45]. For our LKAS,
the GMSL camera [35] captures the image frame at a fixed frame rate, 30 fps. Each frame then
goes through the closed-source ISP pipeline to obtain an image in�NvMedia, YUV� format.

Perception The perception stage performs a set of application-specific preprocessing, feature ex-
traction and control state computation steps on the image obtained from the ISP.

The preprocessing step in LKAS (shown in Fig. 12(a)) involves converting the image in
�NvMedia, YUV� format to the�CUDA, RGBA� and�OpenGL, RGBA� image type and
pixel formats. Closed-source functions ‘image streamer’ and ‘format conversion’ from NVIDIA
perform the image type conversions and pixel format conversions respectively. The �CUDA,
RGBA� format is used for applications that use GPUs and�OpenGL, RGBA� for rendering.

The features to extract are application-specific. The LKAS extracts the lanes from the image
using the NVIDIA proprietary (pre-trained) high-precision DNN lanenet [27] that enables pixel-
level lane detection. Lanenet executes on the GPU and its input is a�CUDA, RGBA� image.
The output of Lanenet is the position values of all the lane containing pixels, i.e., a set of polyline
values in the pixel domain.

Finally, the lateral deviation of the vehicle from the center of the lane is derived. A homography
transformation matrix [46] is computed at design time. This matrix is stored in the platform
memory and is used at runtime to compute the position values of the detected polylines from
Lanenet. The left and right lane polylines are then fit to a second degree polynomial. For a given
look-ahead distance, the center of the lane is derived using these polynomials while the center of
the image gives the vehicle‘s current position. Using these, the lateral deviation is calculated at
the look-ahead distance. The homography transformation at runtime needs to be done only for the
identified lane pixels.

Rendering For LKAS, the rendered image consists of the pre-processed image captured by the
camera in �OpenGL, RGBA� format superimposed with the polylines detected by Lanenet.
The rendering step is not important for the correct functioning of LKAS. Rendering is used for
debugging and often provided as an add-on for automotive customers for visual pleasure.

7.2.2. Control computation (C) and actuation (A) tasks
The default scenario s1 persists when there is always a lane detected in the image captured by

the camera c1 and when there is no request to take a turn, e.g. at a junction. For this scenario, the
LKAS controller explained in Section 3 is used. scenario s2 occurs when there is no lane detected
by camera c1 or when there is a request to take a sharp turn. Here the control computation is a
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Figure 12: (a) The block diagram of image sensing and processing task S. (b) Path planning for scenario s2.
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Figure 13: Multi-camera LKAS SADF graph.

standard path planning algorithm. The direction of the turn is user input or determined arbitrarily
if lanes are detected on both c2 and c3. If no lanes are detected in any of the cameras, AEB is
activated. Actuation task A actuates the vehicle steering to the desired value communicated to it
by the control computation task.

7.3. Formal modelling
The application is modelled as a data flow graph (see Fig. 13 and Section 4). The applications

sharing the platform act as load and the platform is modelled as a platform graph (see Fig. 4) using
the available information [35] (see Section 3).

The LKAS has two application scenarios. The init actor models platform initialisation.
Sc1 , Sc2 and Sc3 actors model the image sensing and processing tasks for cameras c1, c2 and
c3. Each sensing task has the internal structure shown in Fig. 12(a). Cs1 and Cs2 model
the control computations for scenarios s1 and s2. The actuation task is modelled by ac-
tor A. The scenario detector actor SD determines which scenario the application runs in.
ei, eSc1

, esd, eCs1
, eSc2

, eSc3
, eCs2

and ea are the execution times of the corresponding actors.
Note that the workload for this case is defined by the combination of application scenarios,

non-predictable timing behaviour of the closed-source industrial platform and the platform load.
Each platform load condition is abstracted as a variant (see Table 2) for a systemic analysis. The
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parameters which change based on the workload are x, y shown in Fig. 13 (due to the application
scenarios) and the execution times of all actors (due to the platform load).

7.4. Analysis and Design
7.4.1. System mapping and mapping configurations

The tasks/actors need to be mapped to the Tegra SoC resources - CPU, iGPU, dGPU and
memory, where CPU refers to the A57 and denver2 cores. Note that there are two Tegra SoCs in
the NVIDIA Drive PX2 platform. The options available for the developer when mapping to the
PX2 platform are limited. Priorities for tasks can only be assigned on CPU resources. The tasks
mapped to the GPUs are executed by the proprietary NVIDIA scheduler and the execution times
for such tasks vary the most due to the (unpredictable) scheduler [47].

The mapping configuration does not include the schedule of tasks mapped to GPUs as it is
not controllable. Note that init, the homography computation step of S, SD, C and A are always
mapped to CPUs and the other steps of S are always mapped to GPUs. The GPUs can only be
accessed through the CPUs in the same SoC by a blocking call.

7.4.2. Profiling and timing analysis
Platform-aware profiling is a crucial step in this instance of the SPADe flow. Since there are

closed-source functions in the application and a non-real-time Ubuntu OS, the WCETs of tasks in
the application are difficult to predict. The WCET of tasks depends on three factors: scenario of the
IBC application, choice of mapping, and the load on the platform due to the shared applications.
For our case study, we consider two other applications - object detection and tracking (ODT) and
automatic emergency braking (AEB) sharing the platform. Both applications take camera images
as input.

We define variants v.i to characterise and abstract multiple workload scenarios. The variants
we consider based on our mapping choice and platform load are defined in Table 2. The map-
ping is characterised based on mapping to iGPU and dGPU as preliminary experiments show that
compute-intensive imaging tasks perform better on GPUs. Tasks mapped to CPUs take less than
5% of the overall WCET and are not explicitly considered. The platform load AEB and ODT
denote the mapping of these applications to the same GPU as the LKAS. The platform load ODTs
denote the mapping of ODT and LKAS to multiple GPUs (of the same type) so that there is task
sharing between GPUs. This happens in NVIDIA by assigning just the type of GPU to be mapped
for the applications and the proprietary scheduler allocates tasks between multiple GPUs. This
can be observed by analysing the GPU utilisation (explained in Section 7.7).

Note that due to the closed-source GPU scheduler of NVIDIA, the workload due to the appli-
cation scenarios and the platform load conditions at runtime cannot be distinguished. Thus, the
abstraction as variants is a means to enable the optimal system-scenario identification and runtime
reconfiguration(explained in Section 7.5).

For profiling, a database of around 200 images (captured by the GMSL camera) are identified
with varying image workload. Considering image workload variations is important since they
affect the WCET analysis. The image for the minimal workload has no lane markings and no
other vehicles on the road; for the maximal workload it contains three lane markings and other
vehicles. For each variant, each image from the database is run on the PX2 for 10000 iterations.
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Table 2: Characteristics of variants based on mapping choice and platform load conditions
variants v.1 v.2 v.3 v.4 v.5 v.6 v.7 v.8 v.9 v.10
mapping dGPU iGPU dGPU iGPU dGPU iGPU dGPU iGPU dGPU iGPU

load - - AEB AEB ODT ODT
AEB,
ODT

AEB,
ODT ODTs ODTs

ODTs: Object detection and tracking with task sharing between GPUs

The worst-case sensor-to-actuator delay τwc and sampling period hwc is computed as explained
in Section 6.3.2. The execution times of each task are profiled over all the variants and the max-
imum value is taken as the estimated WCET of the corresponding task. This WCET estimate
is used in the application SADF model. τwc and hwc are then computed. Note that though this
worst-case rarely happens, it is needed to guarantee stability of the IBC system. Similarly, for
each variant v.i, the third quartile values of the measured execution times of each task (profiled
for the corresponding variant) is used to compute τi and hi. We thus avoid the measured WCETs
for the majority of the analyzed workload scenarios to avoid overly pessimistic model predictions.

7.4.3. Controller design
The controller for scenario s1 is designed as explained in Section 3. The standard linear

quadratic regulator control is used to design the state feedback gain Fi and the feed forward gain
Ff,i for each variant vi. The control configuration χi is then defined as a tuple χi = (τi, hi, Fi, Ff,i).
For each version, only χi needs to be stored in the memory during implementation. The stability
of this switched system is analysed by deriving linear matrix inequalities (LMIs) that check for the
existence of a common quadratic Lyapunov function (CQLF) (see Section 7.4.3).

For scenario s2, the path planning algorithm identifies two waypoints once the direction to turn
is determined (illustrated in Fig. 12(b) for a 90 degree turn). Waypoint 1 is the centre of the lane
from where the vehicle has to start turning and Waypoint 2 is the centre of the lane after the turn,
from where we expect scenario s1 (see Fig. 12(b)). This can be predicted based on the turning
radius RL. The steering angle δf = atan

(
Lwb

RL

)
, where Lwb is the wheelbase of the vehicle. This

steering angle is constantly applied from Waypoint 1 until the vehicle reaches Waypoint 2 and then
task S repeats. Only Lwb needs to be stored in memory for scenario s2.

7.5. System-scenario identification, implementation and runtime reconfiguration mechanism
A system scenario abstracts multiple variants with the same sampling period and optimal sys-

tem scenarios are identified as explained in Section 6.3.4. The control and mapping configurations
of the variants and their relation to system scenarios are stored as a LUT in platform memory for
runtime implementation. During runtime, we keep track of the start and finishing time of S, i.e.
the sensing delay, to check for which system scenario we need to execute from the LUT. After
identifying the system scenario, we load the corresponding control configuration χi and execute
C. The mapping configuration is then loaded for the subsequent arriving frame. Note that even
though control configurations are loaded every frame, mapping configurations cannot be loaded
until after the system scenario identification is completed and as such there is a delay in loading
mapping configuration by one frame. The classification as variants is thus essential in the iden-
tification of system scenario at runtime as the scenario identification at runtime is dependent on
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Table 3: Bounded τi and hi of Pareto-optimal system configurations
variants v.1 v.2 v.3 v.4 v.5 v.6 v.7 v.8 v.9 v.10
τi in s 0.028 0.042 0.034 0.066 0.040 0.069 0.051 0.100 0.038 0.045
hi in s 1/30 2/30 2/30 2/30 2/30 3/30 2/30 3/30 2/30 2/30

the current mapping as well. An LQR controller designed for the worst-case (τwc, hwc) and its
corresponding control configuration χwc is also stored in the memory as the worst-case system
scenario. At runtime, system scenarios are switching (as explained in 7.4.3) based on the load
and/or mapping choices.

7.6. Design-space exploration at design time: QoC vs utilisation trade-offs
The QoC is defined as the inverse of MSE (defined in Section 3.6) so that a lower MSE means

a better QoC. The utilisation at design-time is defined based on the estimated time spent by the
application in GPU kernel calls. We use this definition for the utilisation metric as this could be
computed in an actual implementation as well. A DSE to obtain different system configurations
is performed for each of the variants defined in Table 2 by choosing different mapping options for
S, C and A tasks. Note that the task mappings are allowed to span over two Tegra SoCs and the
subtasks of S (shown in Fig. 12(a)) can also be mapped to separate GPUs. Pareto-optimal system
configurations are then identified for each variant through Pareto optimisation.

The τi and hi from these Pareto-optimal configurations for each variant (see Table 3) are then
considered for system-scenario identification. The v.i in Fig. 14 correspond to the predicted design
points using our design flow. In Fig. 14, the MSE for v.8 with the largest τi among different
variants is the poorest. The MSE for different variants tends to aggregate based on the hi. System
scenarios can then be identified based on the requirements, e.g. if QoC is the only criterion, we
can select variants v.1, v.7, and the worst case as system scenarios.

The pessimistic τwc and hwc are estimated as explained in Section 6.3.2 to be 0.150 s and 5/30 s
respectively. Note that h7 is only 2/30 s and the identified worst-case variant v.8 has h8 = 0.100 s.
This means that a control design for hwc would see a much worse MSE than any of the variants.

7.7. Hardware-in-the-loop validation using NVIDIA Drive PX2
A design-time analysis alone is insufficient as the runtime behaviour of an industrial plat-

form cannot be predicted. We implement the 10 different variants mentioned in Table 2 using a
hardware-in-the-loop (HiL) simulator for LKAS (shown in Fig. 11) and compare its performance
with the design-time analysis. Our HiL simulator uses webots [48] as the physics simulation en-
gine and interacts with NVIDIA Drive PX2 using TCP/IP. An initial simulator for a single camera
LKAS using V-REP was introduced in [49, 50]. We extend this framework using webots for
multi-camera LKAS with support for turning at a junction (or at user input).

The performance metrics we consider are MSE (explained in Section 3.11) and GPU utilisa-
tion. GPU utilisation is measured by the proprietary NVIDIA Nsight software [51]. GPU utili-
sation gives the measure of the time spent by the application in GPU kernel calls. For compute-
intensive image-based applications sharing the platform, minimising the utilisation is better.
Design-time analysis vs HiL implementation: The v.i in Fig. 14 correspond to the predicted
design points using our design flow and the v.i′ correspond to the design points obtained from
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Figure 14: Validating the design time Pareto-optimal system configurations for each variant v.iwith the corresponding
HiL implementation v.i′.

actual implementation using the HiL simulator. Even though the numbers vary between our design
flow prediction and actual implementation, the trends we observe for the different variants are the
same. Recall that we used measured third quartile execution times instead of WCET in our models.
At run time, when we encounter the WCET or any violation of the (τi, hi) for v.i, we execute the
worst-case controller designed for (τwc, hwc). At runtime, a switched controller considering the
different variants has a much better MSE than the worst-case as there is no aggressive switching,
i.e. once we are running in a particular variant, the runtime situation persists for some time. Notice
that the QoC improves at runtime since the controller executes in the frequently occurring system
scenario.

8. Conclusion

We presented a structured IBC (co-)design flow that considers sensing-application parallelism,
workload variations, platform settings, and control parameters for an efficient design and imple-
mentation of an IBC system. Our scenario- and platform-aware design (SPADe) approach opti-
mises control quality and maximises the effective resource utilisation for a given platform alloca-
tion. We demonstrate the applicability of SPADe for both a predictable multiprocessor platform
and for an industrial platform. Though application timing is difficult to predict in industrial plat-
forms, we show that we can leverage existing predictable dataflow model-based design methods
by carefully co-designing the sensing implementation and the (switched) controller design using
system scenarios. Future work involves a joint Pareto optimisation of multiple (IBC) applications
sharing a platform.
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