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Abstract— Image-based control (IBC) systems have a long
sensing delay. The advent of multiprocessor platforms helps to
cope with this delay by pipelining of the sensing task. However,
existing pipelined IBC system designs are based on linear time-
invariant models and do not consider constraint satisfaction,
system nonlinearities, workload variations and/or given inter-
frame dependencies which are crucial for practical implemen-
tation. A pipelined IBC system implementation using a model
predictive control (MPC) approach that can address these
limitations making a step forward towards real-life adaptation
is thus promising. We present an adaptive MPC formulation
based on linear parameter-varying input/output models for a
pipelined implementation of IBC systems. The proposed method
maximizes quality-of-control by taking into account workload
variations in the image processing for individual pipes in the
sensing pipeline in order to exploit the latest measurements,
besides explicitly considering given inter-frame dependencies,
system nonlinearities and constraints on system variables. The
practical benefits are highlighted through simulations using
vision-based vehicle lateral control as a case study.

I. INTRODUCTION

Image-based control (IBC) systems refer to a class of data-
intensive feedback control systems whose feedback is pro-
vided by camera sensor(s) (see Figure 1). The combination of
camera sensor(s) and image processing algorithms is capable
of detecting a rich set of features in an image that can be
used to compute the states of the system such as relative
position or distance, depth perception, and tracking of the
object-of-interest [1]. The challenge, however, is that there
is an inherent long sensing delay due to compute-intensive
image processing algorithms [2].

A typical implementation of an IBC system uses an
optimal linear quadratic regulator (LQR) [3] considering the
worst-case image workload and thus has worst-case sensing
delay [2] (illustrated in Figure 2). However, this results
in poor effective resource utilisation in a multiprocessor
platform, and suboptimal quality-of-control (QoC) [4], [5].
Multiprocessor platforms with high processing power that
allow parallel and pipelined executions can be used to cope
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Fig. 1: An image-based control (IBC) system: block diagram

with this long worst-case sensing delay. The sensing algo-
rithms may be parallelised (whenever possible, but limited by
the degree of application parallelism) if the algorithmic struc-
ture is known (white/grey box) and thus reduce the worst-
case sensing delay [2], [6]. Pipelined control implementation
executes the sensing algorithm in a pipelined fashion with
the worst-case sensing delay and thus reduces the effective
actuation and sampling rate [7], [8]. The advantage of a
pipelined implementation is that it is applicable even if the
application algorithm is a black box. Note that for nominal
control implementation, the sensor-to-actuator delay τ is at
most equal to the sampling period h, whereas for a pipelined
control implementation τ is greater than h.

However, pipelining is limited by inter-frame dependen-
cies, i.e. the data or algorithmic dependencies between
consecutive frame processing, e.g. due to video coding [9] or
visual tracking [10]. Inter-frame dependence time (denoted
by fd) can be quantified for the current image frame as the
maximum time required to complete the processing of (parts
of) the algorithm the subsequent image frame processing
depends on. Alternatively, fd is the maximum time required
to wait between processing consecutive image frames.

The sensing delay due to the compute-intensive processing
(sensing) of the image stream is dependent on image work-
load variations, which occur due to image content and result
in a wide range between best-case and worst-case image-
processing times. It is known from [4], [5] that explicitly
taking into account workload variations in controller design
improves the QoC. Workload variations are typically con-
sidered as a variable delay or stochastic delay in standard
sampled-data linear control design techniques [11].

In current literature, workload variations are typically con-
sidered only for sequential IBC implementation [5], [6], [12]
and not for pipelined implementation [7], [8] (see Figure 3).
In [13], pipelining is considered along with variable delay
but the inter-frame dependencies are neglected. Further, these
approaches do not consider system nonlinearities, i.e. the
variations in system dynamics, and constraints imposed on
the system variables, which can be crucial when considering



Fig. 2: Illustration of a workload distribution and a sequential
IBC implementation considering worst-case image workload.

a practical implementation. E.g. the maximum steering angle
of the Udacity self-driving car is set to +/- 25 degree [14]
and the vehicle velocity is kept constant for the simulations
in [4], [15].

The main motivation of this paper is to address limi-
tations of the state-of-the-art pipelined multiprocessor IBC
approaches which do not take into account inter-frame
dependencies, system constraints and nonlinearities for the
application of interest. These limitations make it difficult for
these approaches to be realised in real systems.

Contribution: We present an adaptive predictive con-
trol formulation based on linear parameter-varying (LPV)
input/output (I/O) models for a pipelined multiprocessor
implementation of IBC systems while considering workload
variations, inter-frame dependencies, system nonlinearities
and constraints, and thus makes a step forward towards real-
life adaptation. Further, we compare the proposed formu-
lation with the state-of-the-art multiprocessor IBC system
implementations.

Recent advances in numerical optimization for MPC have
enabled safety-critical applications on embedded platforms,
such as engine control and powertrain coordination in the
automotive domain [16], [17]. Moreover, latest methods such
as those recently reported in [18] suggest that the model
and MPC tuning parameters can be adapted at run time
without reconstructing the optimization problem. This allows
implementing adaptive MPC with the same computational
complexity as the non-adaptive case. An MPC formulation
is thus advantageous for use in image-based control systems
where, due to constraints, nonlinearities and workload vari-
ations, an adaptive control method that maximizes control
performance is desirable.

The paper is organized as follows. Section II describes
the application of interest i.e. pipelined image-based con-
trol systems. It details how inter-frame dependencies, the
available number of processing cores and workload varia-
tions influence control requirements and performance. Next,
a modelling approach for such systems is described in
Section III. Section IV includes details on the proposed
MPC formulation. The proposed method is then tested in
simulation on a vision-based lateral control system, including
a comparison with a baseline approach based on a worst-
case estimate for sensing delay. The experimental simulation
results and comparison with the state-of-the-art are discussed
in Section V before concluding the paper in Section VI.
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Fig. 3: Illustration of pipelined IBC system implementation
with constant sampling period h and: (a) with constant worst-
case sensing delay; (b) considering workload variations.

II. PIPELINED IBC SYSTEM IMPLEMENTATION

We consider a typical setting for an IBC system as shown
in Figure 1 having the workload distribution as illustrated
in Figure 2. The main sensor is a camera module that
captures the image stream. The image stream is then fed to an
embedded multiprocessor platform at a fixed frame rate per
second (fps), e.g. 60 fps, and image arrival period fh is given
by fh = 1/60 = 16.67 ms. The tasks in such an application
primarily include compute-intensive image sensing and pro-
cessing (S), control computation (C) and actuation (A) which
are then mapped to run on a multiprocessor platform.

In a pipelined control implementation (see Figure 3), the
sensing operations to read and process the system states
start periodically at tS = kh, where k is a non-negative
integer. The sampling period h is the interval between two
consecutive activations of the sensing operation that require
image frames for processing. We align tS = kh with the
availability of the frames as can be seen in Figure 3 and
hence, h is an integer multiple of fh.

Sensing and processing is followed by control computation
and actuation operations, which generally take short and
nearly constant time for execution. A sensing operation
takes much longer time due to compute heavy processing,
i.e., τS � τC + τA, where τS , τC and τA are the worst-
case execution times of sensing and data processing, con-
trol computation and actuation tasks, respectively. The total
(worst-case) execution time of a loop is thus given by
τ = τS + τC + τA.

For a pipelined implementation, τ > h and it can be
represented as [19]

τ = (nf − 1)fh + τf , where 0 < τf ≤ fh, nf =

⌈
τ

fh

⌉
.

The number of frames arriving within τ is nf . An assumption
we make, for the scope of this work, is that each pipe in the
pipeline is implemented on one processing core.

A. Adaptation with inter-frame dependencies
Inter-frame dependencies capture the data or algorithmic

dependencies between consecutive frame processing. Con-
sidering inter-frame dependencies is crucial for practical
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Fig. 4: Illustration of inter-frame dependencies with fd > fh.
Note: 1) Even if more cores are available they cannot be used
due to inter-frame dependencies; 2) Our method as compared
to [7] does not restrict τ to be an integral multiple of fh; 3)
If fd ≤ fh then h = fh using all four processing cores.

real-life implementation. Inter-frame dependence time fd
is the maximum time required to wait between processing
consecutive image frames due to inter-frame dependencies.
Figure 4 illustrates the impact of inter-frame dependence
time on sampling period. In a pipelined implementation,
considering inter-frame dependencies means that strictly h ≥
fd. Further, h should be an integer multiple of fh. We assume
that fd is known or can be computed.

Inter-frame dependencies mean that sometimes a number
of image frames have to be skipped for processing with
respect to the given image arrival period fh and the sampling
period h. Skipping a frame means that h increases and thus
degrades the control performance [4], [7]. The number of
frames that has to be skipped after processing every frame is
ns−1 as illustrated in Figure 4 where ns = 2 and one frame
is skipped after every frame processing. The effective image
arrival period or the minimum possible sampling period hmin
we can then have is

hmin = ns × fh, where ns =

⌈
fd
fh

⌉
.

The assumption here is that a sufficient number of processing
cores nc is available for pipelining.

B. Adaptation with the available number of processing cores
Another crucial aspect to consider for practical imple-

mentation is the number of available processing cores. A
maximal pipelined implementation is defined as the pipelined
implementation without skipping or dropping feasible image
frames considering inter-frame dependencies and camera
frame rate. A maximal pipelined implementation is achieved
when the realisable periodic sampling period h = hmin. E.g.
Figure 4 illustrates a maximal pipelined implementation with
ns = 2. The number of processing cores needed to realise the
maximal pipelined implementation nmaxc and the effective
sampling period h considering navlc are defined as follows:

nmaxc =

⌈
nf
ns

⌉
, h =

⌈
nmaxc

navlc

ns

⌉
× fh, if navlc < nmaxc ,

= ns × fh, otherwise.

where navlc is the available number of processing cores.
Having more cores, i.e. navlc > nmaxc , does not help as
there are no more frames available for pipelining. However, if
navlc < nmaxc , there are not enough cores available to process
the arriving frames nf and thus h has to be increased and a
maximal pipelined implementation cannot be achieved.

C. Workload variations in pipelined IBC system

The workload variations occur due to varying features in
image content (see Figure 2). When we do not consider
workload variations, a pipelined implementation results in
constant τ and h, as illustrated in Figure 3(a). Notice that
here we measure the outputs y(k + i) for the input image
frame at k + i with a constant worst-case sensing delay of
τ , where for simplicity of notation, by k + i we denote the
time instant (k + i)h with i an integer.

Considering workload variations in a pipelined implemen-
tation of an IBC system implies that we would have varying
sensing delays, e.g. as illustrated in Figure 3(b). For this
example, notice that the camera input frame at k + 4 has a
sensing delay of one frame (τ1 = h), at k+ 3 has a sensing
delay of two frames (τ2 = 2h) and all other frames have
a sensing delay of three frames (τ = 3h). This scenario
results in multiple sensing and image processing (S) tasks
completing their execution at the same time. What this means
is that multiple output measurements y(k+ 2), y(k+ 3) and
y(k+ 4) are available for control computation task C at the
same time instance and no measurements arrive at the next
two sampling instances.

Thus, the main challenge for the pipelined IBC system
design to maximize performance, i.e. QoC, is to effectively
use the sensor measurements as early as possible for control
computation without any unnecessary idling and to predict
the system state when there are no sensor measurements
available. Modelling this behaviour is far from trivial. We
define QoC as the inverse of root mean square error (RMSE),
i.e. QoC=(RMSE)-1.

III. MODELLING AND DISCRETIZATION

In this paper, we consider a broad class of systems that
can be described via linear parameter-varying (LPV) models
for the predictive control approach. Specifically, this sec-
tion first describes continuous-time state-space linear models
which are typically obtained from first-principles. Next, a
discretization scheme is described followed by details on
transformation of the linear model to (I/O) form which is
more suitable for the proposed control method considering
the varying sensor-to-actuator delay.

A. Continuous-time model with input delay

The continuous-time LPV model we consider can mathe-
matically be described at time t as

ẋ(t) = A(p)x(t) +B(p)u(t− τ) (1a)
y(t) = C(p)x(t) (1b)

where x ∈ Rnx denotes the state vector, y ∈ Rny contains
measured outputs and u ∈ Rnu is the vector of control inputs.
Vector p ∈ Rnp contains the scheduling parameters which
determine the model coefficients in matrices A, B and C
as shown in (1). The sensor-to-actuator delay is denoted by
τ and τ > 0. Continuous-time models are useful for an
accurate simulation of the system under study; however, for
computer-based control, it is necessary to have a discrete-
time model considering sampled signals.



B. Discrete-time model

1) State-space description: Based on a zero-order hold
(ZOH) approximation where we assume the input signal to be
constant over each sampling interval, we can use the methods
described in [19] to obtain the discrete-time LPV model

x(kh+ h) = Φ(p)x(kh) + Γ0(p, τ ′)u(kh− ndh)

+ Γ1(p, τ ′)u(kh− ndh− h) (2)

where h is the sampling period, k is an integer indicating
the time step, and

Φ(p) = eA(p)·h (3a)

Γ0(p, τ ′) =

h∫
τ ′

eA(p)·(h−s)ds (3b)

Γ1(p, τ ′) =

τ ′∫
0

eA(p)·(h−s)ds (3c)

such that the total delay τ can be expressed in multiples of
the sampling period as τ = ndh+τ ′, where the remainder τ ′

is 0 ≤ τ ′ < h. In practice, only a numerical approximation of
the matrix exponential is used to compute the model matrices
in (3), for which several methods exist. Specifically, for the
example discussed in Section V, we approximate the matrix
exponential by using its 12th degree Taylor polynomial.

When some states do not need to be controlled, the size
of the control problem may unnecessarily become large
especially if the number of output variables is relatively
small. This motivates the use of I/O models for control,
which also allow an easy incorporation of delay as shown
in Sections III-B.2-III-B.3. In the linear model case, the
I/O equations may simply be derived from the equivalent
transfer function of the state-space model. Note also that
linear models obtained from data-based system identification
methods are often parameterized in I/O form.

2) Input/output difference equations: The state-space
model (2) can be written as the following I/O model

y(k) = C(p) (qI − Φ(p))
−1

Γ0(p, τ ′)u(k − nd)
+ C(p) (qI − Φ(p))

−1
Γ1(p, τ ′)u(k − nd − 1)

where q denotes the forward shift operator such that qy(k) =
y(k + 1) and q−1y(k) = y(k − 1) and for ease of notation
we dropped h by assuming the time scale in terms of
sampling period. The symbol I denotes an identity matrix
of appropriate size. On simplification of the above difference
equations, the multivariable LPV model can be rewritten in
the noise-free auto-regressive exogenous (ARX) form as

y(k) =

nx∑
j=1

Aj(p)y(k−j)+

nx+nd+1∑
j=1

Bj(p, τ
′)u(k−j) (4)

where the coefficient matrices Aj(p) are derived by eval-
uating the determinant of (qI − Φ(p)) whereas entries of
Bj(p, τ

′) are derived from its adjugate matrix, C(p), Γ0 and
Γ1.

3) Adapting the I/O model with time delay: Observing (4)
it is clear that for j = {1, . . . , nd}, Bj = 0, where 0 is a
zero matrix. Therefore, an increase in delay nd implies an
according zeroing of the foremost input coefficients, without
a change in the size of the MPC problem as clarified in
Section IV. This also allows fixing the memory allocation
for the model and the control algorithm based on the worst-
case delay which can reasonably be assumed to be known.
For further simplicity in the design and implementation of
the controller, we assume τ ′ and h to be constant. The
delay τ ′ can be set to zero, especially when it varies, by a
unit increment in nd to simplify the model evaluation as Γ1

becomes a zero matrix referring (3c). The influence of this
simplification is negligible when h is sufficiently small.

IV. PREDICTIVE CONTROL STRATEGY

This section discusses the details on formulating the adap-
tive predictive control problem based on the LPV model (4)
with varying time delay. The reader is referred to [20] for
basic terminology and details related to MPC.

A. Optimization problem formulation

The MPC problem is formulated based on a performance
index which reflects the control objectives and a set of
constraints including the equalities due to the LPV prediction
model (4). We consider a quadratic performance index J that
penalizes output tracking error and deviation of inputs from
steady-state targets, i.e.,

J(k) =

Np(k)∑
j=1

1

2
‖Wy(k + j) · (y(k + j)− yr(k + j))‖22

+

Np(k)−1∑
j=0

1

2
‖Wu(k + j) · (u(k + j)− ur(k + j))‖22

where Wy(k) and Wu(k) denote weights on output and input
respectively at time step k whereas yr and ur denote their
target values. The prediction horizon Np(k) determines the
number of decision variables i.e., the inputs and outputs in
prediction to be optimized. Considering simple bounds on
the decision variables, the MPC problem to be solved at
each time step is the constrained optimization problem

min
u(·),y(·)

J(k) (5a)

s.t. y(k + l) =

nx∑
j=1

Aj(p)y(k + l − j)

+

nx+nd(k)+1∑
j=1

Bj(p)u(k + l − j)

=M(p,nd(k)) · φ(k + l − 1), ∀l ∈ {1, . . . , Np} (5b)
u(k + j) = u(k +Nu − 1), ∀j ∈ {Nu, . . . , Np} (5c)

y(k) = y0 (5d)
φ(k) = φ0 (5e)

yl(k + j) ≤ y(k + j) ≤ yu(k + j), ∀j ∈ {1, . . . , Np} (5f)
ul(k + j) ≤ u(k + j) ≤ uu(k + j),∀j ∈ {1, . . . , Nu} (5g)

where M in (5b) is the matrix of parameter-dependent model
coefficients such that φ(k) = [y>(k), y>(k−1), . . . , y>(k−



Fig. 5: Illustration of cases described in Section IV-B. The
samples k + 3 and k + 4 have lower workloads and thus
the latest output measurement y(k + 4) is available within
one fh. Note that for case 2, the latest measurements are not
available and thus u(k + i) is computed based on the MPC
prediction model.
nx), u>(k−1), u>(k−2), . . . , u>(k−nx−nd(k)−1)]>. The
upper and lower bounds on any variable z are denoted as zu
and zl respectively. The initial condition (5d)-(5e) in the I/O
case is provided via the measured output feedback y0, and
vector φ0 which also includes the known past sequence of
inputs and outputs. The input sequence that is optimized is
typically restricted to fewer variables for trading-off control
performance with computations via the control horizon (Nu)
constraint (5c) i.e., by tuning the parameter Nu such that
1 ≤ Nu < Np, where Np > nd. Note that the future values
of parameters p can be incorporated as they may be known
and in that case p represents p(k+ l) in the LPV model (5b).

B. Adaptation with workload variations

In IBC, besides control computation and actuation time,
the sensor-to-actuator delay mainly includes the sensing
time. We assume that the delay due to control computation
and actuation are fixed, but the sensing delay may vary as
explained in Section II-C. We propose to adapt the controller
at run time to make immediate use of the latest available
measurement in order to maximize QoC. The basic idea is to
have the time delay as a variable parameter based on which
the model is adapted as explained in Section III-B.3. The
varying parameter (nd) is then kept constant in prediction
as shown in (5b). Since the actuation rate can be constant
thanks to pipelining, a new control action is computed at
each time step with a ZOH during the sampling period.

The following three cases may occur at each time step due
to varying sensing delay (illustrated in Figure 5):- case 1) the
new measurement is available with the same sensing delay
as in the previous step: in this case the parameter nd is kept
constant and the initial condition for computing the new con-
trol input is updated as usual i.e., φ = [y>(k−1), . . . , y>(k−
nx), · · · ]> becomes φ = [y(k), . . . , y>(k − nx + 1), · · · ]>;
case 2) the sensing delay is increased compared to the
previous step as the latest measurement is not available:
in this case, the prediction is done starting from the old
measurement, i.e., the delay parameter nd is incremented by
1 and the stack of past outputs in φ is not updated. case 3)
the sensing delay is reduced by one or more steps: when
multiple pipes finish processing a corresponding sequence of
frames, both the latest measurement(s) along with the past
measurements now available are fed to the controller and
nd is accordingly reduced where, from an implementation
perspective, the output stack in the initial condition φ is
updated as in case 1 discussed above and the same procedure

Fig. 6: Vision-based lateral control system derived from [15].

is then repeated as many times as the reduction in nd before
computing the next control input.

Since a new control input is applied at each step, the
stack of past inputs in the initial condition vector φ is
always updated by a unit shift in all the three cases,
i.e., in φ = [· · · , u>(k − 1), . . . , u>(k − n)]> becomes
φ = [· · · , u>(k), . . . , u>(k − n+ 1)]>. In conclusion, until
the next measurement is available, the proposed controller
compensates for the delay by making use of the prediction
model to implicitly estimate the current status of the system
(without a separate open-loop estimator) while accordingly
computing an optimal action that satisfies given constraints.

The ordering of measurements is important in the cur-
rent MPC implementation since we do not want to allow
discarding measurements (as the application we consider, in
Section V-A, is safety-critical). This can be considered as a
limitation of the current approach. Ordering means that the
latest measurement y(k+ i) is updated in the output stack φ
iff the previous measurements y(k+ j), j < i, were already
updated in φ.

V. SIMULATION RESULTS AND COMPARISON

A. Case study: Vision-based lateral control system

We consider the bicycle model derived from [15] (illus-
trated in Fig. 6) for simulating the vision-based lateral control
of a vehicle1 on a straight road and it is described as follows,

ẋ(t) = A(vx)x(t) +Bu(t− τ), y(t) = Cx(t), (6)

A(vx) =


− cf+crmvx

−mv2x+crlr−cf lf
mvx

0 0
−lf cf+lrcr

Iψvx
− l

2
f cf+l

2
rcr

Iψvx
0 0

−1 −L 0 vx
0 −1 0 0

 ,
B =

[
cf
m

lf cf
Iψ

0 0
]>

, C =
[

0 0 1 0
]
,

where, referring to Figure 6 and (6), we define the state
vector x(t) = [vy, ψ̇, yL, εL]; the measured output y(t) as
yL; the control input u(t) as δf which is the steering angle
constrained to have a maximum magnitude of 0.5 radians;
ψ̇ is the vehicle’s yaw rate in rad/s; the velocity components
vx and vy are in m/s; lf , lr (= 1.22 and 1.62 m respectively)
denote distance of the front and rear axles from the center of
gravity (CoG); Iψ (= 2920 kg·m2) is the total inertia of the
vehicle around its CoG; cf , cr (= 1.2× 105 N/rad) denote
cornering stiffness of the front and rear tires; and the total
mass of the vehicle is m (= 1590 kg).

1The vehicle parameters are those specified in [15] for Honda Accord.



B. MPC implementation

Based on a discretized version2 of (6) using methods dis-
cussed in Section III-B, the optimization problem (5) can be
formulated for MPC with longitudinal velocity vx and delay
parameter nd as the scheduling variables. Constraints are
imposed on the control input δf . In (5b), vx may be assumed
either to be a constant in prediction or a variable, as described
in Section IV-A. Since for the considered lateral control
system, problem (5) has a quadratic cost function subject
to linear constraints, it can be solved using any quadratic
programming (QP) algorithm. We use the methods described
in [18] for an efficient implementation. Specifically, the QP
problem (5) is transformed to the following box-constrained
least-squares problem by eliminating equality constraints
through quadratic penalties with large weight ρ, i.e.,

min
u(·),y(·)

J(k) + ρ
Np∑
l=1

‖y(k + l)−M(p, nd(k)) · φ(k + l − 1)‖2

s.t. (5f)-(5g), (7)

and by substituting (5c)-(5e) in the cost function. Follow-
ing [18], we implement the optimization algorithm such that
it is not only able to automatically adapt to changes in
parameters p including nd but also MPC parameters such as
the horizons Nu, Np, and the tuning weights through which
the controller can be re-tuned at run time. Besides this, as
problem (7) is always solvable, this method has a practical
benefit as it is also able to deal with situations under which
the constrained QP (5) might become infeasible to solve due
to model mismatch and unmeasured disturbances.

C. Controller performance evaluation

This section includes simulation results for our case study.
We consider two scenarios: 1) the adaptive MPC algorithm is
run with a constant worst-case delay, i.e. neglecting workload
variations, and 2) with delay as a variable to explicitly
consider workload variations, without changing any tuning
parameters. The purpose of this simulation is to highlight
the benefits of the control design that also adapts well with
workload variations. The influence of delay is apparent with
model mismatch and unmeasured disturbances. Since the
true system considered is the continuous-time model (6)
and discretization errors are negligible, in order to emulate
the influence of realistic model mismatch and unmeasured
disturbances, we provide the output reference for vehicle
lateral control along with the output measurement, i.e., with
a varying delay. Note that this is done only for this particular
simulation scenario and is not the case in practice where the
reference is already known.

We assume the camera frame rate of 60 fps i.e. fh =
1/60 s. Simulation length is 5000 time steps i.e. T = 83.33
s. Unit weights are imposed on all I/O variables for MPC,
while Np = Nu = 10 time steps. The steady-state input
reference ur(t) = 0 whereas the output reference profile is
set to a sinusoidal signal such that at time step k, yr(k) =

2The symbolic math toolbox of MATLAB R2015b was used for obtaining
the required discrete-time LPV model from (6)
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Fig. 7: Lateral position of the vehicle w.r.t. the road centre.

2.5 · sin (5khπ/T ) m. The longitudinal velocity is a ramp
signal such that vx(0) = 45 and vx(T ) = 80 km/h, which
we assume to be known in prediction for the controller.

The mean runtime for the control algorithm was 2.2 ms
while solving the optimization problems with 20 decision
variables in MATLAB (on a computer equipped with a
2.6GHz processor). Referring to the reported runtimes in [18]
for control problems of comparable size, we expect a similar
efficient embedded implementation of the algorithms with a
C backend to significantly reduce these runtimes (roughly
by 20x, to about 0.1 ms) on a processor with comparable
specifications. Assuming that the target platform is around
60 times slower, the WCET of tasks S, C and A are
τS= 60 ms [6], τC= 6 ms [18] and τA= 0.5 ms, respectively.
This results in worst-case delay τ = 66.5 ms and nf = 4.

We assume that the inter-frame dependence time fd is
given and fd = 15 ms. So ns = 1 and the maximum number
of cores needed nmaxc = 4. We assume that navlc = 4 and
thus h = 1/60 s. To simulate the workload variations for the
variable delay scenario, we consider the delay to be a random
signal where the delay may take any value ndh which is held
constant for every 20 frames such that nd ∈ {1, 2, 3, 4} with
the corresponding probability distribution of occurrence as
{0.2435,0.3534,0.3073,0.0958}. Such a probability distribu-
tion for characterising workload variations can be statistically
analysed from observed data [4], [5].

Based on the aforementioned simulation implemented in
MATLAB on a computer equipped with a 2.6GHz processor,
the results obtained show that an RMSE of 2.98 cm from
the output reference is achieved using MPC considering
a variable delay. For MPC based on constant (worst-case)
delay the RMSE increases by 26.85% to 3.78 cm, as is
clearly seen in Figure 7. The improvement by handling
workload variations is expected to be higher when the worst-
case delay is considerably larger than its mean.

In the simulation, we considered the following aspects
which are crucial for real-life practical implementation. 1)
inter-frame dependencies: fd = 15 ms; 2) system nonlinear-
ities: vx is a ramp signal; 3) constraints: δf constrained to
maximum magnitude of 0.5 radians; and 4) workload vari-
ations as a variable delay based on probability distribution.
Future work includes validating our case study in a hardware-
in-the-loop setting using [21].



TABLE I: Comparing the proposed MPC approach with the state-of-the-art multiprocessor IBC system implementations

Criteria Proposed pipelined MPC Pipelined Parallelisable sequential [4]constant delay [7], [8] variable delay [13]
Inter-frame dependencies explicitly considered not considered not considered independent
System nonlinearities explicitly considered not considered not considered not considered
Constraints on variables can be strictly imposed cannot be imposed cannot be imposed cannot be imposed
Control computation time high (worst-case up to 15x

greater than [4])
low medium (a delay predictor

needed)
low (feedback gain matrix
multiplication)

Algorithm white/gray/black box white/gray/black box white/gray/black box white/gray box
Parallelisation potential independent independent independent should be high
Workload variations explicitly considered in

design
not considered indirectly considered as

variable delay
explicitly considered in
design

Platform can be adapted for all suitable for homogeneous can be adapted for all directly applicable for all
Restrictions on h1 strictly periodic; h < τwc strictly periodic; h < τ strictly periodic; h < τwc switched system possible
Restrictions on τ strictly2 τwc > h strictly τ > h; in [7], τ is

strictly a multiple of h
strictly2 τwc > h τwc ≤ h

τwc: worst-case delay; 1 If camera frame arrival period fh is considered, always h is a multiple of fh; 2 if τ ≤ h design reverts to sequential;

D. Comparison with the state-of-the-art

We compare the proposed MPC formulation for pipelined
IBC implementation with state-of-the-art multiprocessor IBC
design techniques in Table I. For brevity, we only com-
pare with multiprocessor IBC system implementations and
not with traditional sequential control design techniques
based on the worst-case sensing delay, as it has already
been shown in [4], [5] that considering workload vari-
ations is beneficial for optimizing control performance.
The multiprocessor implementations can be classified into
pipelined [7], [8] with constant delay, pipelined with variable
delay [13] and sequential implementation with parallelisable
sensing [4], [6], [12]. The camera frame rate, however, is not
explicitly considered in [8].

The proposed approach is advantageous to others with
respect to: 1) considering inter-frame dependencies; 2) mod-
elling and considering system nonlinearities; and 3) strictly
imposing constraints on the system variables. These aspects
are crucial for practical implementation and explicitly con-
sidering them helps in making a step forward towards real-
life adaptation. The proposed approach, however, requires
higher worst-case control computation time τC (up to 15x
greater than in [4]) due to solving the online optimization
problem. Note that τC is not yet significant compared to the
sensing workload, i.e. τS � τC + τA. Future work includes
identifying a case where τC can be significant compared to
the sensing workload and adapting our method for it.

VI. CONCLUSION

We presented a pipelined, multiprocessor, adaptive MPC
formulation for IBC systems while considering workload
variations, inter-frame dependencies, system nonlinearities
and constraints on system variables. The proposed approach
aims to reduce the gap between current state-of-the-art
multiprocessor IBC approaches and practical control re-
quirements while optimizing quality-of-control and making
a step forward towards real-life adaptation. First results
based on simulations suggest that by using the proposed
method one can address practical implementation challenges
not directly dealt with in the past approaches, which either
did not consider variations in sensing delay, or inter-frame
dependencies, presence of nonlinearities in system dynamics,

or practical constraints on system variables. Prospective work
aims to bring the proposed methods closer to practical im-
plementation through a hardware-in-the-loop implementation
of a vehicle lateral control system.
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