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Abstract—While vision is an attractive alternative to many
sensors targeting closed-loop controllers, it comes with high time-
varying workload and robustness issues when targeted to edge
devices with limited energy, memory and computing resources.
Replacing classical vision processing pipelines, e.g., lane detection
using Sobel filter, with deep learning algorithms is a way to deal
with the robustness issues while hardware-efficient implementa-
tion is crucial for their adaptation for safe closed-loop systems.
However, while implemented on an embedded edge device, the
performance of these algorithms highly depends on their mapping
on the target hardware and situation encountered by the system.
That is, first, the timing performance numbers (e.g., latency,
throughput) depends on the algorithm schedule, i.e., what part
of the AI workload runs where (e.g., GPU, CPU) and their
invocation frequency (e.g., how frequently we run a classifier).
Second, the perception performance (e.g., detection accuracy)
is heavily influenced by the situation – e.g., snowy and sunny
weather condition provides very different lane detection accuracy.
These factors directly influence the closed-loop performance, for
example, the lane-following accuracy in a lane-keep assist system
(LKAS). We propose a hardware- and situation-aware design of
AI perception where the idea is to define the situations by a set
of relevant environmental factors (e.g., weather, road etc. in an
LKAS). We design the learning algorithms and parameters, overall
hardware mapping and its schedule taking the situation into
account. We show the effectiveness of our approach considering a
realistic LKAS case-study on heterogeneous NVIDIA AGX Xavier
platform in a hardware-in-the-loop framework. Our approach
provides robust LKAS designs with 32% better performance
compared to traditional approaches.

I. INTRODUCTION

A key step for successfully achieving a higher level of
autonomy (e.g., level 5 autonomous vehicle) is effective usage
of a combination of the camera (for being low-cost and well-
developed) and artificial intelligence (for being ubiquitous).
They form the basis for robust environmental sensing re-
quired for operational safety and functional correctness of
next-generation closed-loop autonomous systems. Successful
adaptation of these technologies in practice requires address-
ing two main challenges – hardware-efficiency for being
used in resource-constraint edge devices (e.g., NVIDIA AGX
Xavier [1]) and situation-robustness for safe and correct oper-
ations in a wide variety of situations (e.g., different lighting,
road layout and marking) encountered in real-life.

For illustration, as shown in Fig. 1, we perform a trade-off
analysis between lane detection accuracy over various situations
and maximum achieved frames per second (FPS) on NVIDIA
AGX Xavier for different lane detection algorithms. State-
of-the-art (SOTA) convolutional neural network (CNN) based
segmentation approaches such as VPGNet [2], LaneNet [3]
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Fig. 1. Accuracy and FPS comparison between different lane detection
techniques. Accuracies measured against the dataset introduced in Sec. III-C
and FPS based on 512×256 resolution frames. NVIDIA AGX Xavier platform
[1] constrained to power-budget of 30W is considered for deployment.

etc. perform end-to-end learning with very high robustness to
situational variations. However, these approaches provide low
FPS when implemented on NVIDIA AGX Xavier, which makes
them unsuitable to be used in closed-loop autonomous sys-
tems. On the other hand, traditional lane detection algorithms
proposed in [4]–[7] detect lane segments based on diverse
handcrafted cues like color-based features, structure tensor, bar
filter and so on. Similarly, recent research [8], [9] has shown
that approximate sensing can reduce high compute workloads
at the cost of additional sensor noise which is tackled by robust
control design. This class of algorithms achieve high FPS on
edge devices, but they suffer from robustness issues due to
situation variations raising safety concerns when used in closed-
loop control systems.
Contribution: We make the hardware-efficient traditional ap-
proaches [8], [9] robust to situations by introducing light-weight
CNN classifiers and use this situational knowledge for runtime
dynamic tuning of the required feature values. This translates
to hardware-efficiency and situation-robustness, leading to fail-
safe operation with a higher quality of control (QoC) in closed-
loop systems.

Our proposed method1 is demonstrated with a concrete case-
study (Sec. II) and extensive experiments (Sec. IV).

II. CASE-STUDY

We consider an LKAS consisting of five main stages: camera
sensor, image signal processing (ISP), perception (PR), control
(Tc) and actuate (Ta). We introduce light-weight CNN clas-
sifiers, which dynamically tunes configuration knobs in the

1Our analysis framework is open sourced and can be accessed on github:
https://github.com/sayandipde/robust dynamic sesning.



ISP, PR & Tc based on the situation and hardware setting.
The camera and Ta are modelled and executed in the Webots
physics simulation engine [10], while ISP, PR, CNN classifiers
and Tc are executed in NVIDIA AGX Xavier using the IMACS
framework [11]. Fig. 2 shows an overview of our setup adapted
from [9], [11].
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Fig. 2. Hardware-in-the-loop (HiL) setup for LKAS.

Below we provide an overview of LKAS from an algorithmic
as well as hardware perspective.
Image Signal Processing (ISP): An ISP pipeline transforms a
RAW image from Bayer domain to RGB domain. We consider
five essential stages common to all ISP pipelines - demosaic,
denoise, color map, gamut map and tone map, as defined in
[8], [12] and shown in Fig. 3(a).
Perception (PR): During perception (PR), the lateral deviation
(yL) of the vehicle from the lane center is calculated. First, the
region of interest (ROI) is selected based on the road situation.
Then bird’s eye view of the ROI is obtained using perspective
transform, which is followed by binarization using dynamic
thresholding. Finally, candidate lane pixels are determined us-
ing sliding windows from bottom to top of the image, and curve
fitting is done using a second-order polynomial to calculate yL
at a look-ahead distance (LL). The different stages in PR are
shown in Fig. 3(b).
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Fig. 3. Block-level overview of ISP and PR.

Discrete-time control (Tc): We consider the bicycle model [13]
for the BMWX5 car model in Webots as introduced in [9].
The control takes yL as an input and computes the actuating
steering angle δf using the optimal linear quadratic regulator
(LQR) [14]. A control design is annotated with a pair (h, τ)

that models the sampling period h and the constant (worst-
case) sensor-to-actuation delay τ associated with it for which
we design the controller gains [15], [16]. In this work, the
controller is designed considering LL = 5.5 m.
Considered Platform & Task Mapping: We consider
NVIDIA AGX Xavier [1] for implementing LKAS. It is an
edge device with a maximum power budget of 30W, making it
suitable for use in modern electric vehicles (EVs). As shown in
Fig.4(a), it has an 8-core NVIDIA Carmel ARMv8.2 CPU and
an integrated 512-core NVIDIA Volta GPU, along with 16GB
of LPDDR4x off-chip DRAM memory. Fig. 4(a) only shows
the IPs used in this work.
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Fig. 4. Block-level platform details and LKAS task mappings. See Fig. 3 for
details on the acronyms.

Fig. 4(b) shows the CPU-GPU task mapping for LKAS.
Profiled runtimes for ISP and PR make it evident that sliding
window based lane detection technique is suitable for real-time
operation on NVIDIA AGX Xavier, achieving up to 40FPS
(see Fig. 1). However, due to lack of situation-awareness, this
technique has poor lane detection accuracy (52%, see Fig. 1),
making it unsuitable for safety-critical LKAS. So, we introduce
light-weight CNN classifiers for improving the robustness of
this technique, as explained in Sec. III.

III. HARDWARE- AND SITUATION-AWARE OPTIMIZATION

Closed-loop control systems operate in a range of real-
life situations which is crucial to be sensed to maintain safe
and correct closed-loop functionality. As discussed, existing
SOTA approaches are either performance optimized (in terms
of temporal behavior and qualtify of control) while lacking
robustness [9] or are highly robust lacking performance [3],
as shown in Fig. 1. Proposed work finds a balance between
robustness and closed-loop performance, which is essential for
adaptation of these technologies in practice.

For improving the QoC of closed-loop systems, prior re-
search [8], [9] has focused on reducing the delay τ by approx-
imating the ISP. Additionally, traditional sliding window based
lane detection techniques are used for PR, which are efficient
for edge implementation. However, such an approach lacks
robustness due to high sensitivity to the operating situation. So,
in this work, we tackle this robustness problem by introducing
CNN classifiers, which identifies the situation and dynamically
re-configures the ISP and PR based on hardware- and situation-
aware pre-characterization. A detailed step-wise overview of
our proposed method is shown in Fig. 5. Below we outline the
key steps involved in our methodology.
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Fig. 5. Step-wise overview of our proposed hardware- and situation-aware method.

TABLE I
CONSIDERED FEATURES PER SITUATION.

Features Detailed list
type of lane color: white, yellow

form: dotted, continuous, double continuous
layout of road left turn, right turn, straight

type of day, night, dark,
scene/weather dawn, dusk

A. Situation Definition
Situations are combinations of environmental factors that

potentially influence the closed-loop performance. In this work,
we define situations at design time by considering three main
features that have the most impact on QoC: (1) type of lanes, (2)
layout of roads and (3) type of scene/weather. Table I provides
a detailed list of the considered features.

B. Hardware- and Situation-aware Characterization
The goal of hardware- and situation-aware characterization

is to identify the set of LKAS parameters which perform best
(QoCbest) under a specific situation at design time. For this,
first, we determine the system parameters that are sensitive to
the operating situation using Monte-Carlo simulations of the
entire system [9] using our HiL setup . We observe that the
approximations in the ISP, ROI selection in PR and vehicular
speed selection in the controller (Tc) are the system parameters
that heavily influence the closed-loop QoC. We will refer to
these parameters as configurable knobs for the rest of the paper.
Table II lists these considered configurable knobs.

After identifying system configurable knobs, design time
characterization is done for each situation. For a particular
situation, first, hardware-specific profiling is done for different

TABLE II
CONSIDERED CONFIGURABLE KNOBS IN THE SYSTEM.

Knobs Detailed list Runtime2

S0 : (DM, DN, CM, GM, TM) 21.5 ms
S1 : (DM, CM, GM, TM) 18.9 ms
S2 : (DM, DN, GM, TM) 20.9 ms

ISP S3 : (DM, DN, CM, TM) 3.3 ms
Knobs S4 : (DM, DN, CM, GM) 3.2 ms

S5 : (DM, DN) 3.1 ms
S6 : (DM, CM) 3.2 ms
S7 : (DM, GM) 3.1 ms
S8 : (DM, TM) 3.2 ms
ROI 1 : (60, 0) (300, 0) (160, 65) (280, 65)
ROI 2 : (208, 0) (469, 0) (308, 72) (439, 72)

PR ROI 3 : (188, 0) (469, 0) (298, 72) (429, 72) 3.0 ms
Knobs3 ROI 4 : (69, 0) (333, 0) (117, 72) (221, 72)

ROI 5 : (49, 0) (312, 0) (109, 72) (222, 72)
Control Vehicle speed (v) : 30 kmph, 50 kmph, 2.5 us
Knobs Period (h), Sensor-to-actuation delay (τ )

DM, DN, CM, GM, TM - see Fig. 3 (a)
3 profiled on NVIDIA AGX Xavier.
4 ROI pixels are reported for 512x256 resolution frames.

sets of knob tunings. QoC is then obtained using closed-loop
HiL simulations. The knob tuning values giving the best QoC
per situation are then recorded. These recordings are later used
for dynamic reconfiguration of knobs at runtime. Table III4

provides a list of the pre-characterized situation-specific knob
tunings for the best QoC. It is observed that not many ISP
stages can be skipped for left turns with dotted lanes as it is

4We select a subset of the situations considered in Table I which are most
frequently encountered. A similar approach can be followed for evaluating the
rest of the situations.



TABLE III
PRE-CHARACTERIZED SITUATION-SPECIFIC KNOB TUNINGS FOR QOCbest .

Sit.
No.

Situation Details ISP
knobs

PR
knobs

Tc knobs
[v, h, τ ]

1 straight, white continuous, day S3 ROI 1 [50, 25, 23.1]
2 straight, white dotted, day S7 ROI 1 [50, 25, 22.4]
3 straight, yellow continuous, day S4 ROI 1 [50, 25, 22.5]
4 straight, yellow double, day S6 ROI 1 [50, 25, 22.5]
5 straight, white continuous, night S6 ROI 1 [50, 25, 22.5]
6 straight, yellow continuous, night S8 ROI 1 [50, 25, 23.0]
7 straight, white continuous, dark S8 ROI 1 [50, 25, 23.0]
8 right, white continuous, day S6 ROI 2 [30, 25, 22.5]
9 right, yellow continuous, day S3 ROI 2 [30, 25, 23.1]
10 right, yellow double, day S3 ROI 2 [30, 25, 23.1]
11 right, white continuous, night S8 ROI 2 [30, 25, 23.0]
12 right, yellow continuous, night S3 ROI 2 [30, 25, 23.1]
13 right, white dotted, day S3 ROI 3 [30, 25, 23.1]
14 right, white dotted, night S8 ROI 3 [30, 25, 23.0]
15 left, white continuous, day S3 ROI 4 [30, 25, 23.1]
16 left, yellow continuous, day S8 ROI 4 [30, 25, 23.0]
17 left, yellow double, day S8 ROI 4 [30, 25, 23.0]
18 left, white continuous, night S3 ROI 4 [30, 25, 23.1]
19 left, yellow continuous, night S8 ROI 4 [30, 25, 23.0]
20 left, white dotted, day S2 ROI 5 [30, 45, 40.7]
21 left, white dotted, night S2 ROI 5 [30, 45, 40.7]

difficult to track them in the presence of approximation errors.

C. Situation Identification

For selecting the best tuned knobs, we need to identify the
situations under which LKAS is operating at runtime. For this,
three different light-weight CNN classifiers (scene, road & lane)
are considered based on the Resnet-18 [17] architecture, as
shown in Fig. 5. Sec. IV explains in details our design decision
of choosing three different classifiers. Table IV gives a brief
overview of the three classifiers considered in this work.

D. Dynamic Runtime Reconfiguration

For dynamic runtime reconfiguration, the input frames are
analyzed first, and the operating situation is determined using
the three classifiers introduced in Sec. III-C. Post situation iden-
tification, best hardware- and situation-specific knob tunings are
selected based on the pre-characterization performed in Sec.
III-B. It is noted that the situation identification is performed
on the RGB images obtained from the ISP (see Fig. 2). So,
the PR and control knobs are configured in the same cycles.
However, the ISP knobs are configured in the next cycle. We
argue that configuring the ISP with one cycle delay does not
destabilize the closed-loop system (evident from results in Sec.
IV) as real-life situations do not change per frame. For instance,
while operating at 40 FPS @ 50 kmph, the vehicle progresses
only 35 cms per frame, which is well below the look-ahead
distance (LL = 5.5 m) considered for designing the controller.
Controller stability while switching between different situations
i due to varying τi and hi is guaranteed by the existence of
a common quadratic Lyapunov function (CQLF) as explained
in [15], [16].

TABLE IV
CONSIDERED CLASSIFIERS FOR SITUATION IDENTIFICATION.

Classifiers Details
dataset: 5866 images (train: 5353, val: 513)

Road output classes: straight, left turn, right turn
Classifier classification accuracy: 99.92%

Profiled runtime on NVIDIA AGX Xavier: 5.5 ms
dataset: 4781 images (train: 3939, val: 842)

Lane
Classifier

output classes: white continuous, white dotted,
yellow continuous, yellow double
classification accuracy: 99.97%
Profiled runtime on NVIDIA AGX Xavier: 5.5 ms
dataset: 4703 images (train: 3892, val: 811)

Scene output classes: day, night, dark, dawn, dusk
Classifier classification accuracy: 99.90%

Profiled runtime on NVIDIA AGX Xavier: 5.5 ms

IV. EXPERIMENTAL RESULTS

A. Experimental Settings
We evaluate our hardware- and situation-aware method using

the HiL setup introduced in Sec. II. For our evaluation, we
consider a camera frame rate of 200 FPS in Webots. The
actuation dynamics are modelled based on [18]. Lane width
of 3.25 m is considered, as per standard road safety guidelines.
It is noted that for our experiments, the left lane changes per
situation, but the right lane is always set to white dotted, which
is more common in the real world. The Webots simulation step
is set to 5 ms5, while the vehicle speed is set to either 50 km/hr
or 30 km/hr depending on the operating situation, for all of our
evaluations.

B. Quality of control
We evaluate the closed-loop QoC of LKAS using Mean

Absolute Error (MAE) which is the mean of the cumulative sum
of absolute errors. A lower MAE implies better performance.

MAE =
1

n

n∑
i=1

|y[k]| (1)

where n is the no. of samples and y[k] is the lateral deviation,
yL, at the kth sample and ideally yL should be zero.

C. Static Situation-specific Results and Analysis
To motivate the need for hardware- and situation-aware

sensing for robust system design, we evaluate four different
cases. We start our evaluation with a static LKAS design as the
baseline with no classifiers in case 1. In case 2, we add only the
road classifier. In case 3, we also add the lane classifier along
with the road classifier. Finally, in case 4, we consider all the
three classifiers together. Table V lists the knob settings for all
these four cases. In this section, each situation is evaluated
separately in a static manner. Dynamic switching from one
situation to another is considered in Sec. IV-D.

Fig. 6 shows a comparative analysis of LKAS robustness
and QoC for the above-mentioned four cases over different
situations. All values are normalized to case 3. It is observed
that considering no classifiers (case 1) lead to system failure for
situations with left and right turns, thus, resulting in low LKAS

5h and τ are ceiled to the nearest factor of the simulation step for proper
capture of frames and actuation of steering angles in Webots.
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TABLE V
CONSIDERED CASES FOR ANALYZING ROBUSTNESS AND QOC OF LKAS.

Case
No.

Details ISP
knobs

PR
knobs

Tc knobs
[v, h, τ ]

1 No classifiers Considered S0 ROI 1 [50, 25, 24.6]
2 Only Road Classifier Considered S0 VS [VS, 35, 30.1]
3 Road+Lane Classifier Considered S0 VS [VS, 40, 35.6]
4 All Three Classifier Considered VS VS [VS, VS, VS]

VS: Varied as per situation (see Table III for details).

robustness. This is due to a fixed region of interest (ROI 1). This
motivates the need for a road classifier for situation-specific
change of the ROI. Considering only the road classifier (case
2) improves LKAS robustness as it works for situations with
right and left road layout, with the exception of situations with
right/left turns in combination with dotted lanes. Fine-grained
switching of ROIs (ROI 3 & 5) is needed for proper LKAS
functionality in case of right/left turns with dotted lanes. So, we
consider the lane classifier along with the road classifier (case
3) to identify situations with dotted lanes, and perform fine-
grained ROI switching. This further improves LKAS robustness
resulting in proper LKAS functionality for all situations under
consideration, as shown in Fig. 6.

Improved LKAS robustness, however, comes at the cost of
degraded performance. It is evident from Fig. 6 that case 1
performs the best for situations with straight road layout. This is
due to lower τ and lower h. Each classifier adds runtime penalty
of 5.5 ms6, thus, resulting in a higher τ and h. This impacts
LKAS QoC, resulting in case 1 performing better than case
2, which in turn performs better than case 3. Only exceptions
are situations 15 & 16, where case 3 performs slightly better
than case 2 due to additional sensor noise encountered in left
turns. This can be solved by modeling the sensor noise in a
linear-quadratic gaussian (LQG) controller, which is an inter-
esting future research direction. Recent literature has shown
that LKAS performance can be improved by approximating
the ISP [8], [9], which reduces the τ and thus allows faster
sampling and improved QoC. However, the loss in image
quality due to approximations may degrade the QoC. Balancing
this interaction is essential in determining if we gain or lose in
final QoC. ISP approximations are taken into account in case
4. For hardware-and situation-specific ISP tuning of knobs as
per Table III, a scene classifier is introduced along with the
road and lane classifiers. Case 4 performs better than case 3

6as ResNet-18 architecture is considered for all three classifiers.

across all situations with the only exception of situation 15.
In case of situation 15, the extra approximation error degrades
the QoC much more than the QoC improvements due to faster
sampling, thus, resulting in a worse QoC for case 4 compared
to case 3.

D. Analysis of Dynamic Switching between Situations
For studying the dynamic switching between situations, a

world model is developed in Webots consisting of different
situations commonly encountered in real world, as shown in
Fig. 7. The entire track consists of nine different sectors, where
each sector corresponds to a particular situation. The vehicle
starts from sector 1 (see Fig. 7), and as it progresses along
the track, LKAS switches from one situation to another. The
considered track covers dynamic road layout changes, lane type
& color changes as well as scene changes (transition from night
with street lights to dark with no street lights in sector 8 to 9).
This track is considered as a concrete case study for evaluating
the robustness and QoC of LKAS in the presence of proposed
hardware- and situation-aware sensing.

Fig. 8 shows that the vehicle crashes while moving from
sector 1 to 2 when no classifiers are considered (case 1), due to
fixed ROI in PR. Inclusion of road classifier (case 2) improves
LKAS robustness, but the vehicle crashes while moving from
sector 5 to 6. Road classifier allows coarse-grained ROI changes
based on road layout. But for better robustness, fine-grained
ROI tunings are needed based on lane features (explained in
Sec. IV-C). Thus, considering both road and lane classifiers
(case 3) results in a robust LKAS design and the vehicle
progresses through all the different sectors without crashing.
Improved robustness comes with a performance penalty. This
is evident from Fig. 8. On average, case 3 performs 55%, 22%
worse compared to case 1 and 2 respectively7. To regain the
performance with sacrificing robustness, ISP approximations
are considered (case 4). For tuning ISP knobs, inputs from
all three (road, lane & scene) classifiers are considered. On
average, case 4 improves the QoC of LKAS by 30% compared
to case 3 (robust baseline).

E. Tuning Invocation Frequency of Classifiers
In Sec. IV-D, the three classifiers (road, lane & scene) are

invoked every frame in case 4. An option to improve LKAS
QoC further is to vary the invocation frequency of the classi-
fiers. This is motivated by the fact that certain situation-specific
features do not change per frame, e.g., a scene transition from

7only considering sectors with no LKAS failure



Sector 1
[Situation 5]

Sector 2
[Situation 12]

Sector 3
[Situation 6]

Sector 4
[Situation 18]

Sector 5
[Situation 6] Sector 6

[Situation 21]

Sector 7
[Situation 5]

Sector 8
[Situation 14] Sector 9

[Situation 7]

Street Lights

No Street Lights

Fig. 7. Considered case study for studying dynamic switching of situations.

1 2 3 4 5 6 7 8 9

Different Road Sectors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q
oC

(M
A

E
n
or
m

)

LKASfailure(Case1)

LKASfailure(Case2)

Case 1: No Classifiers

Case 2: Only Road
Classifiers

Case 3: Road+
Lane Classifiers

Case 4: All 3
Classifiers

Variable Invocation
Freq. of Classifiers

Fig. 8. Study of LKAS robustness and performance while switching
between different road sectors/situations. All values are normalized
to case 3.

day to night, lane color and type. In this work, we devise
a simple scheme of invoking one classifier every frame. We
observe that LKAS robustness is more sensitive to the road
classifier compared to the lane and the scene classifier. So, we
invoke the road classifier every frame for a duration of 300 ms8.
After every 300 ms, we invoke the lane classifier in place of
the road classifier. In the next frame, only the scene classifier
is invoked. Again, for the next 300 ms, the road classifier is
invoked every frame, and the cycle is repeated.

Fig. 8 shows that our invocation scheme improves LKAS
QoC further compared to case 4, for all sectors except sector 4
and 6. It is observed that situations with left turns are difficult
to track because of the dotted right lane being away from the
camera frame. This introduces sensor noise and thus, degrades
QoC of LKAS. Fine-grained ROI tuning for dotted lanes with
situational knowledge from lane classifier helps to compensate
for this. Proposed variable scheme invokes the lane classifier
once every 300 ms, which doesnot allow fine-grained ROI
tuning, resulting in degraded QoC for sectors 4 & 6. Sector
6 shows a higher QoC degradation compared to sector 4 due
to both left and right lanes being dotted. On average, variable
invocation frequency for classifiers improves LKAS QoC by
32%, 3% compared to case 3 and 4, respectively.

V. CONCLUSION AND FUTURE WORK

In the context of applying AI in closed-loop systems, we
tackled the problem of balancing between situation robustness
and performance in terms of temporal behavior and QoC. This
is an important design challenge to be addressed for adaptation
of these technologies in many domains, including autonomous
driving. The essence of our approach is to perform situation
identification and optimization at design time and runtime re-
configuration based on the encountered situation. As opposed
to the state-of-the-art end-to-end CNN-based approaches, we
propose to use multiple light-weight CNN classifiers since it
offers flexibility in terms of situation-specific implementation

8Evaluation window of 300 ms is considered for the invocation frequency
study. This is because our LQR controller calculates yL at a look-ahead
distance of 5.5 m and the top vehicle speed is 50 kmph. So, the current control
decision is valid for a position the vehicle will reach after ∼ 400 ms. So, to
not make the system unstable, we consider a window of 300 ms.

and invocations. We reported a simple invocation scheme. A
more complete invocation scheme can be developed in future.

While our results are application-specific, our methodology
can be adopted for other domains by re-defining the situations
and application-specific optimizations. Choice of light-weight
classifiers needs to be reconsidered based on situation defini-
tions. Once the situations & classifiers are defined, the rest of
the methodology can be seamlessly adopted.
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