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Abstract— The high-precision and high-speed positioning sys-
tems require position feedback with high accuracy at a higher
frequency. As reported in recent literature, high accuracy and
high operating frequency can be achieved by fusing multiple
position sensor data, e.g., the linear encoder (less robust/ac-
curate, but fast) and object detection using camera images
(accurate, but slow due to heavy processing load). Typically,
image-based object detection incurs a significant computational
delay due to computationally intensive processes and is the
main performance bottleneck. Moreover, the computation delay
varies when implemented on industrial platforms and degrades
the performance of the closed-loop control system. In this
paper, we present scheduling techniques such as parallelism
and pipelining considering predictable multi-core platforms for
such a multi-sensor positioning system. On the one hand, the
predictable platform nearly removes the variation in execution
time, making the delay constant. On the other hand, the
parallel and pipeline schedules reduce the computation delay,
translating to a shorter sampling period and better closed-
loop performance. Furthermore, we perform a design space
exploration on various parameters and control performance
considering an industrial case study of semiconductor die-
bonding equipment.

I. INTRODUCTION

The high-precision and high-speed positioning systems
are the basic building blocks in many industrial systems,
including semiconductor die-bonding equipment. Typically,
such a system needs to bring the objects (e.g., semiconductor
die, chip, any other object) to the pick (or place) location
from where a pickup mechanism (e.g., vacuum nozzle) picks
the object (or places the object). The performance of such
a system is often determined by how accurately the object
is brought to the pick (or place) location (i.e., reference
position) such that the pickup (or place) operation happens
without violating the system specifications or causing failure.
This further implies that the precision of the positioning
system depends on how accurately and fast the position of
the object (feedback) is measured.

Fig. 1 shows a simplified schematic of an industrial posi-
tioning system in semiconductor die-bonding equipment [2],
[3] that represents the class of systems under consideration
in this work. The system in Fig. 1 utilizes high-precision
linear motors with built-in industrial standard linear encoders
to measure the positions of the motors as indicated in [4].
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Fig. 1. Schematic of a typical industrial positioning system with camera
and linear encoder as sensors.

The linear encoders exhibit high accuracy in measuring the
positions at the point-of-control, such as the wafer table, but
they do not provide the direct capture of the position-of-
interest, such as the actual position of the semiconductor
die. Therefore, in the presence of external disturbances (that
influence the die positions), such a single-sensor system fails
to meet the desired level of positioning accuracy. Multi-
sensor fusion techniques are reported in literature [5], [6],
[7] to improve the sensing accuracy of such systems. The
idea is to measure the actual die/object position using object
detection from the camera images and fuse with the measure-
ment of the table location measured by the linear encoders.
While such a multi-sensor fusion approach is promising,
the performance of such an approach is heavily influenced
by two important factors [8], [9] – (i) how large is the
computation delay of the image processing and (ii) what
is the range of variation in execution time of the sensor
processing.

To deal with these challenges, in this paper, we consider
the CompSOC platform [10], a predictable and compos-
able multi-core system-on-chip (MPSoC) platform designed
for developing embedded control applications with strict
performance requirements. The platform offers determinis-
tic execution of algorithms and supports composability for
multi-application scenarios desired for the deployment of
the control applications. Furthermore, we propose multiple
scheduling approaches to reduce the overall delay in the
closed-loop system. The key contributions of this paper are:

1) Predictable multi-core implementation of multi-sensor
fusion imposing (nearly) constant delay.

2) Reducing sensing delay using predictable parallel im-
plementation.

3) Reducing sensing delay using predictable pipelined



implementation.
4) Design space exploration (DSE) with various imple-

mentation choices and positioning performance on a
dual-core platform.

II. RELATED WORK

In this paper, our focus is on reducing long computational
delays in the context of vision processing to improve posi-
tional precision. This goal is achieved through embedded
implementation on the predictable multi-core CompSOC
platform, using scheduling techniques such as parallelism
and pipelining. In [11], authors explored the integrated
design of control and scheduling. However, their focus is on
networked control systems considering industrial platforms,
not predictable platforms. Furthermore, in [8], [12], authors
proposed a model-based design approach for the implementa-
tion of image-based control systems on multiple processors,
effectively reducing computational delays. However, the idea
of a model-based design approach is not verified on a
predictable platform. The efficient implementation of vision-
based perception for autonomous applications on resource-
constrained embedded platforms is discussed in [13], but
the primary focus is limited to vision-based perception. In
addition, [14] presented the delay-based design technique for
the feedforward controller, which targets the predictable em-
bedded platform but does not explore the impact of different
scheduling techniques. [15] discusses timing challenges asso-
ciated with scheduling algorithms in control loops, address-
ing issues such as jitters in task executions. Authors in [16]
introduced a task-parallel programming scheduling approach
tailored to scientific computing applications. The existing
literature lacks models or investigations into the impact
of pipelining and parallelism scheduling techniques in the
context of vision-in-the-loop for predictable implementation
in industrial motion control systems. This gap in research is
important for handling long computational processing times
when aiming for precise and accurate motion control.

III. BACKGROUND AND PROBLEM STATEMENT

We consider a multi-sensor fusion strategy for position
sensing in high-precision motion control systems as depicted
in Fig. 1. The two sensors under consideration are a linear en-
coder and a camera (vision-based object detector). Typically,
a linear encoder operates at a higher rate, e.g., 8kHz in die-
bonding machines [2]. A linear encoder provides position
feedback ze,k of the point-of-control, e.g., the wafer table
in our case study. First, ze,k is available at a higher rate
with sampling period hencoder. Second, the encoder feedback
ze,k does not capture the effect of disturbances at the point-
of-interest. The overall control system operates at the base
sampling period hencoder.

On the other hand, a vision-based object detection algo-
rithm (e.g., Hough transform) takes a camera image and
provides the true location (including disturbances) of the
object zv,k. First, the processing of images to detect objects is
compute-heavy and incurs significant computing delay τvision.
The period of camera frames hvision ≫ hencoder and for a

sequential implementation hvision ≥ τvision. Given the control
system runs at hencoder, let

hv = ⌈ hvision

hencoder
⌉. (1)

Second, τvision greatly varies depending on the workload
of the specific image frame img[k] on typical industrial
platforms. Considering the computed or estimated worst-case
delay τvision, the vision measurements are delayed by τv base
samples, where

τv = ⌈ τvision

hencoder
⌉. (2)

Therefore, the position information of the image frame
captured at time-instance k, img[k] produces feedback zv,k
after τv samples.

The overall closed-loop system is shown in Fig. 2. The
multi-rate Kalman filter block fuses the linear encoder and
the vision processing data to produce the estimate of the
position ẑk. The position estimate is used in computing the
control input uk. The following sections explain the various
computational blocks and the parameters illustrated in Fig. 2.
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Fig. 2. Control system block diagram with multi-sensor multi-rate
fusion. HT refers to the vision-based object detection algorithm i.e., Hough
Transform, and KF refers to the multi-rate Kalman filter.

A. Multi-rate Sensor Fusion

The multi-rate Kalman filter is used for fusing the linear
encoder and vision data. The linear encoder measurements
ze,k are available with sampling period hencoder. The camera
captures images with period hvision, and the object’s true
position is available after τv samples. That is, the vision
measurement zv,k is produced from the image img[k] captured
τv sample time ago. Accordingly, there are 3 sample modes
based on the sensor data availability at a time instance –
Mode 1: when only linear encoder data ze,k is available;
Mode 2: when ze,k is available and image frame img[.] is
being processed; and Mode 3: when ze,k and zv,k are available.
The multi-rate Kalmar filter technique is used to fuse the
above two types of data in different modes [17] and estimate
position ẑk with sampling period hencoder. Fig. 3 shows the
timing diagram of the multi-rate data fusion approach.

B. Control structure

The control law is composed of proportional-derivative-
integrator (PID) based feedback controller and an iterative
learning controller (ILC) for feedforward. As shown in
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Fig. 3. Timing diagram of multi-rate sensor fusion algorithm. τvision is
the worst-case execution-time of the vision-based object detector, img[k]
is the captured image, zv,k is the vision measurement, ze,k is the encoder
measurement, and ẑk is the sensor fusion output at time instance k.

Fig. 2, the control input uk is achieved through the com-
bination of feedback control ( f bk) and feedforward control
( f f j), denoted as

uk = f bk + f f j.

1) PID Controller: The discrete-time PID controller equa-
tion is given as follows:

f bk = kpek + ki

k

∑
m=0

emhencoder + kd

(
ek − ek−1

hencoder

)
, (3)

where f bk is the feedback control action, kp, ki, and kd
are the proportional, integral, and derivative controller gains
respectively. ek is the error signal,

ek = ẑk − rk, (4)

where rk is the reference at the kth sampling instance.
2) Feed-forward ILC: The high-precision positioning sys-

tem under consideration performs repetitive pick-and-place
tasks of different objects, e.g., semiconductor dies. ILC is
particularly beneficial for managing repetitive errors in a
control system over time [18], [19]. We consider ILC design
reported in [2] in this work. Essentially, the ILC algorithms
provides the feedforward signal f f j where j is the iteration
(i.e., index of a particular pick-and-place task).

C. Problem Statement

The main problem tackled in this work is to achieve a
shorter and (nearly) constant processing time of the vision-
based object detection algorithm (for images with the same
workload) towards improving control performance. τvision
is the worst-case execution time of the object detection
algorithm. As depicted in Fig. 3, if τvision is large, the
vision feedback is provided less frequently which reduces the
sensing accuracy and control performance. Moreover, a high
variation in the computation time of vision processing results
in a large and pessimistic τvision, which in turn negatively
influences the control performance.

IV. PREDICTABLE MULTI-CORE PLATFORM

We consider CompSOC embedded platform featuring a
tile-based architecture that enables configuration using multi-
processor synchronized tiles, interconnects, local and shared
memories. CompSOC uses a predictable and composable
micro-kernel (CoMiK) [20] to create a virtual execution
platform (VEP) [21]. In CompSOC, resources are space- and
time-partitioned to create VEPs in which applications run
independently. These partitions allow multiple applications
to execute in their independent VEP, following the time-
division-multiplexing (TDM) schedule. In the following, we
describe the instance of the platform used in this work.
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Fig. 4. CompSOC architecture with 3 processor tiles. The green boxes
show the CoMiK slots.

A. Hardware Architecture

Fig. 4 shows the CompSOC hardware architecture under
consideration. We focus on a commercial instance of Comp-
SoC called Verintec as the hardware architecture, where the
platform has three RISC-V processor tiles connected through
shared memory. We denote the tiles as Processor Tile 0, 1,
and 2. Each tile has a local memory denoted as L0, L1, and
L2. Total local memory per tile (L0/L1/L2) is 128KB of
which 96KB is available for the applications and 32KB is
used by the system application (discussion in the following
subsection). There is a shared memory of size 32KB between
each pair of tiles. For example, Processor Tile 0 and 1 have
a shared memory denoted by SM01. Therefore, we have
three shared memories SM01, SM02, and SM12 for the 3-tile
architecture under consideration.

B. Software Architecture

The platform utilizes CoMik to generate VEPs, which
serve as dedicated resources. A TDM policy is used on
all processor tiles. The platform achieves precise global
synchronization by employing a periodic TDM policy. In the
platform under consideration, the TDM table can be divided
into maximum 4 VEPs and minimum 2 VEPs. The VEPs
are denoted by V EP1 to V EP4 respectively. In between any
two VEPs, there is a CoMik slot. The length of the CoMik
slot is constant and denoted by w number of cycles and
w = 2000. The length of each VEP is denoted by ψk number
of cycles, where k = 1,2,3,4. A fixed number of cycles is
allocated to the system application that runs on V EP1 of
each tile. In our experiments, we consider ψ1 = 5000 cycles
and 32KB local memory for VEP1. Each VEP (i.e., VEP2,
VEP3 or VEP4) might have local memory of size – the



maximum 64KB and the minimum 32KB and total memory
size is 96KB. Fig. 5 illustrates the TDM table that executes
sequentially and periodically. The TDM period is calculated
as ∑

4
k=1(w+ψk).

VEP1 VEP2 VEP3 VEP4

System
application

TDM Period

Fig. 5. The TDM table with 4 VEPs.

V. PREDICTABLE SENSOR FUSION IMPLEMENTATION

We consider the application described in Section III and
the platform described in Section IV for implementation.
The question is how to deploy or map the application to
the platform such that the timing behavior shown in Fig. 3
is realized.

A. Application Model

As shown in Fig. 2, there are four computation blocks:
HT, KF, PID, and ILC. Since the execution times of KF,
PID, and ILC are negligible compared to that of HT, and are
running at the same rate, we execute all three of them as a
single task. This leads to two computation blocks: HT and
KF+PID+ILC, with different execution times and execution
rates. The application model should capture the dependency
between various computation blocks, execution times, and
rates. We use the synchronous dataflow (SDF) [22] to model
the application behavior. A dataflow model is a directed
graph with actors or nodes modeling computation blocks and
platform-dependent execution time, and edges or channels
capturing the dependencies between actors. Tokens represent
data communicated through channels and have a memory
requirement. Channels may contain initial tokens, denoted by
dots. Initial tokens represent data availability in a channel at
the start of analysis. A simulation of an SDF graph involves
firing (execution) of actors. An actor executes for a fixed
time specified by its execution time. An actor can fire iff
sufficient tokens are available on all its input channels. These
amounts are called the rates, indicated next to the channel
ends (omitted if 1). Every time an actor fires, it consumes
the same number of tokens from its input channels and
produces the same number of tokens on its output channels,
as modelled by the rates. Fixed rates allow iterative execution
of an SDF, where the initial token distribution occurs after
each iteration.

Fig. 6 shows the dataflow model of the sensor fusion
implementation. Two computation blocks are modeled by
two actors annotated by their worst-case execution times
τvision and τKF,PID,ILC respectively. In addition, the encoder
data generation and the camera image capture are modeled
by two additional actors Encoder and Camera, with hencoder
and hvision execution times. Further, the actuation operation

is assumed to take negligible time τactuation and is modeled
by the Actuation actor. At t = 0, the Camera, Encoder,
HT and KF+PID+ILC actors use the initial tokens on their
incoming channels and fires. The Encoder actor simulates
the encoder data availability with period hencoder, the base
sample period of the sensor fusion implementation. The
Camera actor produces one image frame in every hv base
samples (see Eq. 1). The actor HT executes for τvision time
and produces hv tokens on the outgoing channel. One firing
of actor KF+PID+ILC requires only one token produced by
the HT actor. An assumption in this model is that the control
and actuation tasks complete within one base sample, i.e.
hencoder ≥ (τKF,PID,ILC+τactuation). The above model captures
the application behavior respecting the timing behavior and
dependencies described in Fig. 3.

Camera HT

ActuationEncoder

...1

KF+PID
+ILC

Fig. 6. Dataflow model for multi-rate sensor fusion algorithm shown in
Fig. 2.

B. Application Profiling

To decide on the platform configuration and mapping, we
need to measure the execution and memory footprint of the
actors on the CompSOC platform under consideration. We
use processor-in-the-loop (PIL) simulation to measure the
WCET and memory utilization of each task. We prototyped
the automatic code generation for the CompSOC platform
on the PYNQ-Z2 FPGA board [23]. This tool generates the
code specific to the target, and designers can choose which
part of the MATLAB Simulink model runs on the platform.

The execution times of the tasks KF, PID and ILC are
negligible compared to the HT actor and run at the same
rate. Therefore, we run KF, PID and ILC tasks on one VEP
while the HT actor runs on another VEP. Table I shows the
memory footprint and execution time profiled on the above
instance of the CompSOC platform.

TABLE I
PROFILING THE SEQUENTIAL IMPLEMENTATION

Memory Footprint WCET

HT 47.88 KB 30.5 ms
KF + PID + ILC 21.62 KB 0.53 ms
Image (token) 12.20KB -



C. Sequential Implementation

In the case of multi-rate sensor fusion, a sequential imple-
mentation refers to the sequential execution of the compute-
heavy sensing task (modeled by the HT actor). To achieve
independent task execution on the CompSOC platform, we
implement it in such a way that, each task runs one after
the other. The two tasks shown in Table I should run in
parallel with different rates as captured in the application
model. Therefore, they should be mapped to different tiles
for parallel execution. Hence, we map the task or actor HT
to VEP2 in Tile 1 and the task KF+PID+ILC to VEP2 in
Tile 0. The task KF+PID+ILC should be executed with a
sampling period hencoder. We consider hencoder = 1ms for our
implementation (in line with its execution time of 0.53ms)
which should be equal to the TDM period. The length of
the TDM period i.e., (ψ1 + 2w + ψ2) in Tile 0 is given
by 1ms× 40MHz = 40000cycles. We configure the Tile 0
with two VEPs as shown in Fig. 7. VEP1 runs the system
application and is 5000 cycles long. The length of VEP2 is
given by

ψ2 =(40000−2000×2−5000)cycles= 31000cycles= 0.7ms.

From the execution time of task HT, τvision = 30.5ms and
τv = ⌈ τvision

hencoder
⌉= 31. We consider 200 f ps with image frame

arrival period hcamera = 5ms. As hvision ≥ τvision,

hvision = ⌈ τvision

hcamera
⌉×hcamera = 35ms.

The length of the TDM period in Tile 1 should be equal
to hvision and is given by, 35ms×40MHz = 1400000cycles.
We configure the Tile 1 with two VEPs as shown in Fig. 7.
VEP1 runs the system application and is 5000 cycles. The
length VEP2 is given by

ψ2 = (1400000−2000×2−5000)cycles = 34.7ms.

Here, hv = ⌈ hvision
hencoder

⌉= 35.
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Fig. 7. Timing diagram of the sequential implementation.

VI. ADAPTATION FOR PARALLEL IMPLEMENTATION

As shown in Table I, the HT task is compute-heavy
compared to the other tasks. The main idea of parallelism is
to split the HT task into multiple subtasks and execute them
in parallel. This is feasible if the subtasks are independent.
The HT task executes the Hough transform which searches
for a line over a range of angles θ =−5◦ to +5◦. The search

can be done independently over different ranges of θ and in
essence, we can parallelize the HT task over different ranges
of θ . In this work, the HT task is split into two ranges −5◦

to 0◦ and 1◦ to +5◦ which can be executed independently.
We name these tasks HT1 and HT2. Internally, the Hough
transform algorithm computes data peaks in these two tasks
and merging task (M) merges those data peaks to obtain the
location of the center of the object.

A. Application Model
The dataflow model of the parallel implementation is

shown in Fig. 8. The only difference from the sequential
case is that both HT1 and HT2 must be completed before the
M task is executed. In the case of parallel implementation,
the production rate of the sensing task is hpar

v , instead of hv,
and is calculated in Section VI-C.
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ActuationEncoder

HT2
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Fig. 8. Dataflow model for parallel implementation of multi-rate sensor
fusion algorithm and control.

B. Application Profiling
Table II shows the memory footprint and execution time

profiled on the instance of the CompSOC platform in PIL
mode. HT1 has a longer execution time since it handles a
larger range of θ .

TABLE II
PROFILING THE PARALLEL IMPLEMENTATION

Memory Footprint WCET

HT1 22.3KB 18.5ms
HT2 25.58KB 15.5ms
KF+PID+ILC 21.62KB 0.53ms

C. Parallel Implementation
The tasks shown in Table II should run in parallel with

different rates as captured in the application model and
illustrated in Fig. 9. We map the task or actor HT1 to VEP2
in Tile 1, HT2 to VEP2 in Tile 2, and the task KF+PID+ILC
to VEP2 in Tile 0. We implement both the M task and the
HT1 task on VEP2 in Tile 1. However, after the completion
of the HT1 task, the M task initiates its execution and awaits
the output from both HT1 and HT2. The configuration for
Tile 0 is identical to the sequential case with hencoder = 1ms.
From the execution time of tasks HT1 and HT2,

τvision = max(τvision,1,τvision,2) = 18.5ms



and τv = ⌈ τvision
hencoder

⌉= 19. With frame arrival period hcamera =

5ms and hvision ≥ τvision, hvision = ⌈ τvision
hcamera

⌉×hcamera = 20ms.
The length of the TDM period of Tile 1 and Tile 2 is

given by 20ms× 40MHz = 800000cycles. Accordingly, we
configure Tile 1 and Tile 2 with two VEPs. VEP1 runs the
system application and is 5000 cycles long. The length of
VEP2 is given by

ψ2 = (800000−2000×2−5000)cycles

= 791000cycles

= 19.7ms.

hpar
v = ⌈ hvision

hencoder
⌉= 20.
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Fig. 9. Timing diagram of the parallel implementation.

VII. ADAPTATION FOR PIPELINED IMPLEMENTATION

We refer to Table I. The HT task takes a longer execution
time compared to the KF+PID+ILC task, resulting in a
significant increase in sensor-to-actuator delay. The concept
behind a pipelined implementation is to process camera
frames by the HT task in a pipeline across multiple cores,
thereby reducing the effective vision sampling period.

A. Application Model

Fig. 10 shows the data flow model of the pipelined imple-
mentation with two pipes (derived from [8]). We pipelined
the HT task on two cores, processing the two pipes. We
represent the two pipes as HT 1 and HT 2.

B. Application Profiling

We consider the timings and memory footprints obtained
from the sequential implementation profiling (see Table I).
The HT 1 and HT 2 task operates over the same range θ =
−5◦ to +5◦ as the sequential implementation.

C. Pipelined Implementation

Fig. 11 shows the Gantt chart for the pipelined implemen-
tation to illustrate the workflow of each task. We map the
HT 1 on VEP2 of Tile 1 and HT 2 on VEP2 of Tile 2. Each
HT processes a distinct image. In the example illustrated in

Camera
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Fig. 10. Dataflow model for pipelined implementation with two pipes, i.e.,
p=2.

the figure, the HT 1 on Tile 1 processes the img[k] (stored in
SM01), while the HT 2 task runs on Tile 2 and processes
the img[k + 2] (stored in SM02). The KF+PID+ILC task
is mapped to VEP2 of Tile 0, the same as the sequen-
tial implementation. The execution time of the HT task is
τvision = 30.5ms, and τv = ⌈ τvision

hencoder
⌉= 31. The camera frame

rate is 200 f ps, therefore hvision is given by

hvision = ⌈ τvision

p×hcamera
⌉×hcamera = 20ms.

where p is the number of pipes i.e., p = 2. The HT 1 and
HT 2 runs on Tile 1 and Tile 2, processing distinct images at
intervals of hvision = 20ms. Therefore, the length of the TDM
period for Tile 1 and Tile 2 is given by 35ms× 40MHz =
1400000cycles. As shown in Fig. 11, we configure Tile 1 and
Tile 2 with two VEPs. VEP1 runs the system application and
requires 5000 cycles. The length of VEP2 is given by

ψ2 = (1400000−2000×2−5000)cycles = 34.7ms.

Since, the hvision = 20ms and hencoder = 1ms, the hpip
v =

⌈ hvision
hencoder

⌉= 20.
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Fig. 11. Timing diagram of the pipelined implementation with two pipes.

VIII. RESULTS

A. Predictable Implementation Tool Flow

Fig.12 illustrates the complete tool flow for synchronous
lock-step simulation of sequential, parallel, and pipelined



implementations on CompSOC. We model the industrial
positioning system including actuators and sensors in Fig.1
using the physics simulation engine CoppeliaSim [24]. The
multi-rate sensor fusion and control algorithm computation
are performed on the CompSOC platform. CoppeliaSim
and CompSOC are interfaced through MATLAB using the
MATLAB remote API.

In CoppeliaSim, the linear encoder sensor measures the
position of the wafer table and sends the position information
ze,k to the MATLAB Simulink Get Encoder block. The
vision sensor sends the captured image img[k] to the Get
Image and Edge Detection block in MATLAB Simulink.
Furthermore, the Monitoring Application is responsible for
synchronization between the tasks running on CompSOC
(in real-time) and the plant simulation (in logical simulation
time). It receives the img[k] and ze,k as inputs and stores them
in the CompSOC shared memory that is further accessed by
other tasks for control signal computation and actuation.

For example, in the case of the sequential implementation
explained in Fig. 7, the monitoring application stores the
img[k] and ze,k in SM01 shared memory and sends the
img[k] to the HT task every hvision period. The HT task runs
on CompSOC Tile 1, processes the img[k], and sends the
vision measurement zv,k to the KF+PID+ILC task on Tile 0
which also receives ze,k from the monitoring application
every hencoder period and computes the control action uk. The
resulting control action uk is written back to shared memory
SM01, which is then read by the monitoring application
to provide to the Update actuator block responsible for
actuating the plant. Similar deployment is realized for some
variants of our implementations.

The setup verifies the timing properties of the designed
application executed on the CompSOC platform as well as
it allows for functional verification on MATLAB.

Update actuator

Get Encoder

Get Image and
edge detection 

Plant 

Linear Encoder
sensor

Vision sensor

Monitoring
Application

PIL block 

HT

KF+PID+ILC

CompSOC MATLAB Simulink CoppeliaSim

Fig. 12. Predictable implementation tool flow for synchronous lock-step
simulation and experimentation.

B. Validation of Predictable Implementations

Fig. 13 illustrates the closed-loop performance achieved
with a sequential, parallel, and pipelined predictable imple-
mentation on CompSOC. The region-of-interset (RoI) of the
camera is 142× 88 pixels – see Fig. 1. The HT task uses
142×88-pixel images. One pixel is calibrated to the dimen-
sion of 1mm. A semiconductor die has a dimension of 25×25

pixels (or 25mm×25mm). The reference position is 0.020m
which is equivalent to 20pixel. We evaluate the closed-loop
performance of the control system considering the mean
absolute error (MAE) (m) i.e., MAE = 1

N ∑
N−1
k=1 |(zk − ẑk)|

where zk is the true die position, ẑk is the estimated position,
i.e., multi-rate sensor fusion output and the settling time is
the time to reach within 2% of the reference position.
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Fig. 13. Closed-loop performance with sequential, parallel, and pipelined
implementation.

We consider a system explained in Fig. 1 with an exter-
nal disturbance of 0.0025m. In the case of the sequential
implementation, the output of the multi-rate sensor fusion
converges to the true die position in 0.18s with an MAE of
0.00023m. In the parallel implementation, the system con-
verges to the reference in 0.15s with an MAE of 0.00020m.
In the pipelined implementation, the settling time is reduced
to 0.13s with an MAE of 0.000211m. Clearly, the parallel and
pipelined implementations significantly reduce the sampling
period which leads to an improved performance compared
to the sequential implementation.

C. Design space exploration

We perform design space exploration (DSE) by consid-
ering various implementation choices and evaluating their
effectiveness across various θ ranges in the HT task. Table III
presents the results, which show how execution timings and
sample periods change with respect to different θ ranges.
Table IV presents the closed-loop performance for different
predictable implementations based on various ranges of θ

with different tuned PID controller gains.



TABLE III
DESIGN SPACE EXPLORATION

θ range
Sequential Parallelism Pipelined

WCET hvision WCET hvision hvision

Case 1 30.5ms 35ms 18.5ms 20ms 20ms
Case 2 25.5ms 30ms 16.5ms 20ms 15ms
Case 3 20.5ms 25ms 13.5ms 15ms 15ms

⋆θ range – Case 1:−5◦ to 5◦, Case 2:−4◦ to 4◦, and Case 3: −3◦ to 3◦

TABLE IV
CLOSED-LOOP PERFORMANCE FOR DIFFERENT IMPLEMENTATIONS

Scheduling Case Kp Ki Kd
Performance metrics

technique Settling Time MAE

Sequential

Case 1 1500 500 100 0.18s 0.00023m

Case 2 1500 500 100 0.21s 0.00028m

Case 3 1500 500 100 0.28s 0.00031m

Parallelism

Case 1 1500 320 185 0.15s 0.00020m

Case 2 1500 320 185 0.15s 0.00022m

Case 3 1500 320 185 0.17s 0.00026m

Pipelined

Case 1 1500 450 230 0.13s 0.000211m

Case 2 1500 450 230 0.15s 0.00024m

Case 3 1500 450 230 0.16s 0.000254m
⋆θ range – Case 1:−5◦ to 5◦, Case 2:−4◦ to 4◦, and Case 3: −3◦ to 3◦

From Tables III and IV, it can be observed that as the θ

range decreases, the WCET of the HT task also decreases,
leading to a reduced hvision. However, the reduction in the
θ range increases the MAE which is undesirable. This is a
trade-off. It is crucial to select the appropriate predictable
implementation technique for a given position precision.
Generally, the sampling period is reduced with parallel and
pipelined implementation. The control performance further
depends on the tuning or design of the controller. In this case,
the PID gains further play an important role in translating a
shorter sampling period to a better performance. Under the
dual-core parallel and pipelined implementations, the sam-
pling periods are nearly comparable. Depending on the PID
gains, the performance of the closed-loop controller changes.
With the manual gain tuning, Case 1 of the pipelined imple-
mentation gives the shortest settling time while Case 1 of the
parallel implementation gives the smallest MAE. Generally,
Case 1 has the widest θ range compared to other cases and
leads to a lower MAE due to higher sensing accuracy.

IX. CONCLUSIONS

We presented a predictable multi-core implementation of
multi-rate sensor fusion aiming to reduce the delay and make
it constant. We used an instance of the CompSOC platform
with three processing tiles, and our implementations are dual-
core or three-core. Our results show that the parallel and
pipelined implementations of fusion algorithms significantly
reduce the effective delay/sampling period which can be
translated to an improved performance by appropriate design

of the controller. Future research involves expanding our
design-space exploration by considering a greater number
of cores and employing model-based design methods to
optimize the computational delay of the vision processing
workload.
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[7] M. Čech, A.-J. Beltman, and K. Ozols, “Digital twins and ai in smart
motion control applications,” in IEEE 27th International Conference
on Emerging Technologies and Factory Automation (ETFA), 2022.

[8] S. Mohamed, D. Goswami et al., “Optimising multiprocessor image-
based control through pipelining and parallelism,” IEEE Access, 2021.

[9] P. M. Sharkey and D. W. Murray, “Delays versus performance of
visually guided systems,” IEE Proceedings-Control Theory and Ap-
plications, vol. 143, no. 5, pp. 436–447, 1996.

[10] K. Goossens, M. Koedam et al., “Noc-based multiprocessor architec-
ture for mixed-time-criticality applications,” in Handbook of Hard-
ware/Software Codesign. Springer, 2017.

[11] A. Cervin, D. Henriksson et al., “How does control timing affect
performance? analysis and simulation of timing using jitterbug and
truetime,” IEEE control systems magazine, 2003.

[12] S. Mohamed, “Multiprocessor image-based control: Model-driven
optimisation,” Eindhoven University of Technology, 2022.

[13] S. Chakraborty and Q. Rao, “Introduction to the special issue on
embedded systems for computer vision,” Leibniz Transactions on
Embedded Systems, vol. 8, no. 1, pp. 00–1, 2022.

[14] M. Haghi, F. Wenguang et al., “Delay-based design of feedforward
tracking control for predictable embedded platforms,” in American
Control Conference (ACC). IEEE, 2019, pp. 3726–3733.

[15] P. Martı́, R. Villa et al., “On real-time control tasks schedulability,” in
European Control Conference (ECC). IEEE, 2001.

[16] T.-W. Huang and L. Hwang, “Task-parallel programming with con-
strained parallelism,” in High Performance Extreme Computing Con-
ference (HPEC). IEEE, 2022.

[17] Z. Zhu, J. Lu, and S. Zhu, “Multi-rate kalman filtering for structural
dynamic response reconstruction by fusing multi-type sensor data with
different sampling frequencies,” Engineering Structures, 2023.

[18] D.A. Bristow and M. Tharayil, and A.G. Alleyne, “A survey of
iterative learning control,” IEEE Control Systems Magazine, 2006.

[19] Wijdeven, van de, J.J.M. and O.H. Bosgra, “Using basis functions in
iterative learning control : analysis and design theory,” International
Journal of Control, vol. 83, no. 4, pp. 661–675, 2010.

[20] A. Nelson, A. B. Nejad et al., “Comik: A predictable and cycle-
accurately composable real-time microkernel,” in 2014 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE,
2014, pp. 1–4.

[21] K. Goossens, A. Azevedo et al., “Virtual execution platforms for
mixed-time-criticality systems: The compsoc architecture and design
flow,” ACM SIGBED Review, vol. 10, no. 3, pp. 23–34, 2013.

[22] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Pro-
ceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[23] “Xup pynq-z2,” accessed: 14-02-2022. [Online]. Available: https:
//www.xilinx.com/support/university/xup-boards/XUPPYNQ-Z2.html

[24] A. C. Robotics, “Robot simulator CoppeliaSim: create, compose,
simulate, any robot-coppelia robotics,” 2020.

https://www.xilinx.com/support/university/xup-boards/XUPPYNQ-Z2.html 
https://www.xilinx.com/support/university/xup-boards/XUPPYNQ-Z2.html 

	Introduction
	Related Work
	Background and Problem Statement
	Multi-rate Sensor Fusion
	Control structure
	PID Controller
	Feed-forward ILC

	Problem Statement

	 Predictable Multi-core Platform
	Hardware Architecture
	Software Architecture

	Predictable Sensor Fusion Implementation
	Application Model
	Application Profiling
	Sequential Implementation

	Adaptation for Parallel Implementation
	Application Model
	Application Profiling
	Parallel Implementation

	Adaptation for Pipelined Implementation
	Application Model
	Application Profiling
	Pipelined Implementation

	Results
	Predictable Implementation Tool Flow
	Validation of Predictable Implementations
	Design space exploration

	Conclusions
	References

