Approximation Trade Offs in an Image-Based
Control System

Abstract—Image-based control (IBC) systems use camera
sensor(s) to perceive the environment. The inherent compute-
heavy nature of image processing causes long processing delay
that negatively influences the performance of the IBC systems.
Our idea is to reduce the long delay using coarse-grained
approximation of the image signal processing pipeline without
affecting the functionality and performance of the IBC system.
The question is: how is the degree of approximation related
to the closed-loop quality-of-control (QoC), memory utilization
and energy consumption? We present a software-in-the-loop
(SiL) evaluation framework for the above approximation-in-
the-loop system. We identify the error resilient stages and the
corresponding coarse-grained approximation settings for the IBC
system. We perform trade off analysis between the QoC, memory
utilisation and energy consumption for varying degrees of coarse-
grained approximation. We demonstrate the effectiveness of our
approach using a concrete case study of a lane keeping assist
system (LKAS). We obtain energy and memory reduction of upto
84% and 29% respectively, for 28% QoC improvements.

I. INTRODUCTION

Image-Based Control (IBC) systems are data-intensive feed-
back control systems whose feedback is provided by camera
sensor(s). Emergence of low-cost CMOS cameras and efficient
image-processing algorithms has contributed to the increasing
popularity of IBC systems. They are widely used in automotive
applications like advanced driver assistance systems (ADAS)
and autonomous driving systems [1]. An IBC system consists
of three main tasks: sensing (7%), control computation (1)
and actuation (7). T processes the frames captured by the
camera, T, executes the control algorithm and 7|, applies the
decisions taken by the controller as shown in Fig. 1. T} is
compute-heavy and the worst-case execution time (WCET) of
T, is usually several times higher than that of 7, and T}, (see
Fig. 1), resulting in a long sensing-to-actuation delay 7 (delay
(Ts +Tc +T0a)).

The control performance of an IBC system can be improved
by reducing the long sensing-to-actuation delay 7 of the
system [2]. The sensing task (7%) is the main bottleneck in
this. One way to reduce the long WCET of the sensing task
(T) is to consider approximate computations. Approximate
computing trades off quality of desired output for performance
as well as energy improvements in error resilient applications.
Prior literature has shown that image processing is inherently
error resilient [3], [4]. So, in this work, we trade off the quality
of the desired output in the sensing stage for performance,
memory utilization and energy improvements of the entire IBC
system while guaranteeing the system functionality.

Typical IBC systems are equipped with image signal pro-
cessing (ISP) pipelines that are designed for photography [4].
The ISP stage preprocesses the RAW image data from the
camera sensor and converts it to a compressed format. It

produces high-quality images for visual consumption. Our key
observation is that these photography-oriented ISP pipelines
are an overkill for IBC systems, as the control algorithms do
not need the high level of visual quality produced by these
pipelines. So, we consider different coarse-grained approxi-
mation settings on the ISP stage to evaluate its trade off on
the control performance of the entire system.

Raw Image Data

Raw Image Data Raw Image Data

Sampling Period
Ts | Tc | Ta Ts | Tc | Ta Ts

- ~

[[]
Time

=3 Sensing
1BC I'| == control
Actuate
ISP
PR

Sensing]

5 10 15 20 25 30 35
Runtime (ms)

Fig. 1. Tasks in an IBC system: Runtimes for different sub-tasks are shown
for a lane keeping assist system (LKAS).

The key contributions of this work are:

1) Identifying error resilient workloads/stages in the IBC
system which can give maximum gains on approxi-
mation (using time and energy footprints of the entire
system) (see Section IV-A).

2) Obtaining different coarse-grained approximation set-
tings on the identified stages and analyzing its impact on
the control performance of the entire IBC system (see
Section IV-B).

3) Investigating the impact of approximating the ISP stage
on the subsequent stages in the IBC system, in combina-
tion with approximation-aware tuning of the subsequent
stages (see Section IV-C).

4) Trade off analysis between the quality of control (QoC),
degree of approximation, memory utilization and energy
consumption in an IBC system (see Section V).

This work focuses on the approximation of the ISP stage as
it contributes to more than 80% of the entire workload of the
system (see Fig. 1). We apply coarse-grained approximation by
skipping different sub-stages in the ISP pipeline. Fine-grained
approximations are also possible, but we limit the scope
to coarse-grained ones. We demonstrate the effectiveness of
our approach on the concrete case study of a lane keeping
assist system (LKAS). Approximating the ISP pipeline re-
quires approximation-aware application specific tuning of the
subsequent stages. It is worth noting that our work is generic
and can be applied to any IBC system with an ISP pipeline.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III gives a background on
IBC systems with LKAS as a case study. Our proposed coarse-
grained approximation methodology is described in Section
IV. Section V gives the trade offs between QoC, degree of
approximation, energy and memory. Section VI concludes the
paper with a glimpse on possible future research directions.

II. RELATED WORK

Approximate computing has been applied to different levels
across the computing stack. However, prior research lacks an
in-depth study on the impact of approximations on bigger
closed-loop systems like IBC systems.

Approximations at different levels of the system stack:
An algorithmic approximation approach for general-purpose
programs is proposed in [5]. It trains a neural network to
mimic and replace an error-resilient compute-intensive portion
of a code segment. A similar learning based framework is
proposed in [6] which automates the design of ISPs for new
camera systems. An architectural approximation technique is
reported in [7] which focuses on code acceleration using
approximate multipliers in a neural accelerator. A hardware-
based approximation technique is proposed in [4] that skips
selected ISP stages.

Full system approximations: A method to approximate
different stages of a smart-camera system like sensor, memory,
compute and communication is proposed in [8]. A case study,
showing benefits of approximations in biometric security sys-
tems, targeting an iris scanning application is demonstrated
in [9]. A hardware-based approximation technique for a
compute-intensive nonlinear model predictive control (NMPC)
computation is shown in [10]. This approach considers ap-
proximation of control computation assuming that the sensing
is accurate. However, approximating the sensing tasks will
introduce errors into the state information of the control. This
affects the control performance, which is not considered.

Prior research efforts have already focused on approxima-
tion of different individual components or subsystems [4]—[7].
However, they consider each subsystem as a stand-alone entity.
There are two downsides to this approach:

1) These subsystems usually work as a part of bigger closed-
loop IBC systems. So, approximating one subsystem might
result in undesired behaviour in another subsystem, resulting
in failure of the IBC system as a whole.

2) If a subsystem works as a part of a closed-loop system,
then any approximation decision on that particular subsystem
might have quality implications on the overall system at a
later period of time. [15] presents tooling to evaluate closed-
loop IBC systems, but it does not present a detailed analysis
of approximation in closed loops. Other prior work fails
to address closed-loop behaviour as it considers open-loop
systems [8]-[10].

To address these limitations, this work makes an in-depth
study on the impact of approximation on the control perfor-
mance of the entire IBC system. To the best of the authors’
knowledge, this is the first work that not only approximates
different individual subsystems, but also evaluates their impact
on a bigger closed-loop system.

III. EMBEDDED IMAGE-BASED CONTROL

A typical IBC system consists of three main tasks, namely,
sensing (7%), control computation (7;) and actuation (7}) as
shown in Fig. 2. In this work, we consider a lane keeping
assist system (LKAS) as a concrete case study to analyze

approximation trade offs on an IBC system. A LKAS helps
to keep a vehicle centered in a detected lane autonomously. It
applies mild steering torque if it identifies that the vehicle
is drifting towards the side of a lane. The main stages
in the LKAS system are ISP, perception (PR) and control
computation. These stages are simulated and validated using
a software-in-the-loop (SiL) simulator.

A. Image Signal Processing (ISP)

The ISP pipeline is responsible for converting the raw image
data obtained from the camera sensor to a compressed image
(JPEG in this work). ISP consists of a series of signal process-
ing stages that are optimized to produce high-quality images
suitable for human vision. There is no precise definition for
the stages to be present in an ISP pipeline. Modern ISPs may
comprise of hundreds of proprietary stages. We consider a set
of stages common to all ISP pipelines as defined in [4]:

1) Demosaicing: The raw output of the camera sensor has
a bayer layout in which each pixel contains either red, green
or blue data. For a rgb image, each pixel must contain all
three channels. Demosaicing fills the missing color channels
by interpolating values from the neighboring pixels.

2) Denoising: The demosaiced image suffers from three
sources of noise: shot noise due to physics of light detection,
thermal noise of pixels and read noise from the readout
circuitry of the camera sensor. Denoising exploits the spatial-
similarity of the image to improve the signal-to-noise ratio, by
averaging the neighboring pixels that resemble each other.

Import

e/
v-rep
Road - T~ Simulation
Model_ -~ =~ \E\nvironment
0, ~
| oI\ |
: Iy O Actuation r\
: (Ta) : Physics
Icamera |\ """ """ _ " _ 4 _ _ _ _ Simulation
Sensor X[k] ulk] Engine
i —————————— ===~ [~ —— =7 (Server)
| v
[z Formonl L J e]
I g (PR) »| Computation | |
| (ISP) (Te) | C++
: Sensing (Ts) | code
I (client
L } ()

Fig. 2. SiL simulator setup for LKAS system.

3) Color Mapping & White Balancing: Color mapping
reduces the intensity of the green channel to match that of
the blue and the red. White balancing converts the color
temperature of the image to match the lighting in the scene.
These are per-pixel operations.

4) Gamut Mapping: Gamut mapping is a non-linear per-
pixel transform that corrects the pixel values to be within a
display’s acceptable color range.

5) Tone Mapping: Tone mapping is another non-linear per-
pixel transform which compresses the dynamic range of the

image and improves the contrast by making dark area brighter
while not overexposing bright areas.

6) Compression: Image compression helps to reduce the
storage as well as the data communication between different
processing stages like the ISP, PR etc. We consider standard
JPEG compression which uses DCT quantization to exploit
signal sparsity in high-frequency space.

Different ISP stages along with their corresponding outputs
are shown in Fig. 3(a). We consider only these stages as
they represent the common functionalities that may impact
the LKAS. In this paper, the CRIP [4] pipeline is used. It is
optimized for performance using Halide [11].

Raw Image Compressed Image

| (| |
| (I |
| Demosaicing : : Region of :
: L Interest (ROI) 1
| (| |
| ‘ 11 ¥ |
: Denoisi : : Bird’s Eve View :
enoising
| 1 (BEV) 1
| (| B = |
! | | RGB tol 1
|
| | | _Gray |
| | Color Mapping & y | | |
| | White Balancing : : Color Masking :
|
(
‘ 1	;
(
	Gamut Mapping :
l : : Sliding Window :	
! based Lane	
(-
1 Tracking	
Tone Mapping (
1	
(
3 1 ;	
! Compressed L] I	
	Compression
: g | : Deviation Deviation |
I 11 |

(a) Image Signal Processing (ISP) (b) Perception (PR)
Fig. 3. Overview of ISP and PR stages.
B. Perception (PR)

The perception (PR) stage performs a set of application-
specific preprocessing, feature extraction and inference steps
on the image obtained from the ISP. For our LKAS setup, the
PR stage extracts the lateral deviation of the vehicle from the
center of the lane.

In the preprocessing step, first the ISP output is decom-
pressed and then the region of interest (ROI) is extracted. A
perspective transformation is performed on the ROI to get a
bird’s eye view of the look-ahead lane (see Fig. 3(b) rowl,2).

The feature extraction step detects the candidate lane
pixels from the bird’s eye view of the image. First the RGB
image is converted to a grayscale image to compute only
on a single channel. Then a color masking step is applied
which performs per-pixel static thresholding on the image.
The outcome is an image with the white lane markers clearly
differentiable from the rest of the image (see Fig. 3(b) row3).
This is followed by a sliding window based lane detection
technique. At first, a column wise histogram of the bottom
half of the image is obtained which gives the base for the left
and right lane markers. These base points are used to center
the bottom pair of windows within which candidate lane pixels
searched. Once all candidate pixels are identified, their mean

position is used to center the next pair of windows and new
candidate pixels are identified. This process is repeated until
all windows within the height of the image have been covered
(see Fig. 3(b) row4, 5).

In the inference step, the lateral deviation of the vehicle
from the center of the lane is identified. The previously
identified positions of left and right line markers are fit to
a second degree polynomial. For a given look-ahead distance,
the center of the lane is identified using these polynomials
while the center of the image gives the vehicle’s current
position. Using these, the lateral deviation is calculated at the
look-ahead distance.

C. Discrete-time control implementation (T.)

We consider a linear time-invariant (LTI) system given by:

ic(t) = Acxc(t) + Bcu(t)v yc(t) = chc(t)a (1

where z.(t), wu(t), y.(t) represents the state, input and

output of the system, respectively. A., B., C. represent the

state, input and output matrices of the system, respectively.
For our case study, we consider the model in [12], where

—-10.06 —-1299 0 0 O 75.47
1.096 —-11.27 0 0 O 50.14
A.=| —-1.000 —-15.00 0 15 O |, B.= 0 ,
0 —-1.000 0 0 15 0
0 00 0 O 0

C.=100100]. The control input u(¢) is the front-wheel
steering angle d; and the output y.(¢) is the lateral deviation
from the desired centerline point at look-ahead distance ¥y, .

We consider a time-triggered implementation for actuation
task 7T, to guarantee constant sensing-to-actuation delay 7.
Each setting of the coarse-grained approximations S is anno-
tated with a pair (h;, ;) that models the sampling period and
delay associated with it. The interval between two consecutive
executions of the sensing task is defined as the sampling
period. A zero-order sample-and-hold approach can then be
used to discretize the system based on the coarse-grained
approximation setting S7 as follows:

wlk +1] = Agwlk] + Bjulk] + Bjulk — 1], y[k] = Cea[k].

Ach 0 himTi 1 hi
AizeCﬂBi:/ ecsdsBc,Bl-:/
0 h

i T

A
e”““°ds B..

We define new system states z[k] = [z[k] ulk —1]]" with
2[0] = [2[0] 0]” to obtain a higher-order augmented system
A; B}

as follows: .
d d d d B;

z[k + 1] = Afz[k] + B ulk], Ai:|: 0o 0],Bi:[7]
0 and I represent the zero and identity matrices. A check
for controllability [13] is done for this augmented system. If
the system is not controllable, controllability decomposition is
done to obtain a controllable subsystem.

Control law: The control input u[k] is a state feedback
controller of the form given below, where F; is the state
feedback gain and F; is the integral gain both designed for
the coarse-grained approximation setting Si.

ulk] = Fiz[k] + Fy; /(Ccz[k] — reference) 2)

To design F; and Fy;, we use the standard linear quadratic
regulator control with integral action (LQI) [14].

D. Software-in-the-loop (SiL) simulator

A SiL simulator for LKAS is set up using the IMACS
framework [15]. This SiL simulator simulates the plant or
system using a physics simulation engine. The plant in this
work is a vehicle with a top look-ahead camera. The simulator
takes the raw image containing state information z[k] from the
camera sensor as input. This raw image goes through the ISP
and PR stages, at the end of which the state information x[k]
is extracted. x[k] is fed to the controller which computes the
input u[k] and communicates it back to the physics simulation
engine for actuation. The frame rate for the camera can
be set either in the simulation engine or can be triggered
synchronously using the simulator.

IMACS includes the virtual robot experimentation platform
(V-REP) [16] as the physics simulation engine. A 3D road
environment is modeled using 3ds Max [17]. V-REP is oper-
ated using a remote API in client-server architecture, in which
the server is the V-REP and the client is the software written
in C++ (see Fig. 2). Each V-REP simulation step progresses
in full synchronization with the software. The client receives
the image captured by the camera sensor in V-REP, runs the
software and sets the control input u[k].

IV. PROPOSED METHODOLOGY

This section outlines the various design strategies for evalu-
ating the trade off between QoC and approximation for an IBC
system. Although we present our results for LKAS, similar
strategies can be formulated for other IBC systems.

A. Where to spend the effort?

A LKAS consists of four main sub-stages (see Fig. 2): ISP,
PR, control computation and actuation. Actuation depends on
the vehicle dynamics and cannot be approximated. However,
prior literature has shown that all ISP [4], [6], PR [5] and
control computation [10] stages can be approximated. To
figure out the best approximation opportunities in LKAS,
which can give maximum gains in terms of performance and
energy efficiency, we performed a full system profiling of
LKAS. Both time and energy aware profiling is performed
to find the ‘hot’ approximable regions in LKAS.

Fig. 4 shows the time and energy profiling results for LKAS.
The profiling results are shown for a general purpose 8-
core Intel i9 CPU' running ubuntu 18.04, with Kaby Lake
architecture, 256KB L2 cache, 16MB L3 cache and 64 GB
RAM. For time profiling, to eliminate the impact of cache
misses, each stage in LKAS is executed 10000 times per
input image. To consider image workload variations, each
stage is tested for 200 different images. Refer to Algorithm.
1 for explanation of time profiling steps. For actuation, we
consider a WCET of 0.5 ms [18]. For energy profiling, we
need the power consumption of each stage along with its
execution time (obtained from time profiling). We calculate

Using an embedded automotive platform will also have similar profiling
trends as the absolute profile values will change, not the relative values.

Algorithm 1: Time Profiling of LKAS

1 lkas < {ISP, PR, Control}
2 database < get 200 different images from V-REP
3 for each stage in lkas do

4 for all 7 in 0 < 7 < 200 do

5 for all 7 in 0 < 5 < 10000 do

6 execute stage for input databaseli]
7 T; <« store execution time

8 end

9 Min; < min{T; | 0 < j < 10000}?
10 end

1 Fistage < median{Min; | 0 < i < 200}?
12 end

13 return Frsp, Frr, Foontrol

the instantaneous power using the Running Average Power
Limit (RAPL) interface [19] which estimates power usage by
using hardware performance counters and I/O models.

It is evident from Fig. 4 that ISP takes the most (82%)
of the total runtime of the system. Also, ISP consumes the
most (93%) of the total energy of the system. So, we focus

on approximation of the ISP as it will give maximum gains.

= 1 IsP] 4 1 IsP
35 == PR 144 [| 5 == PR
- 2
30 =3 Control 12 3 =3 Control
[Actuate
g2s o s10
° — 5 = > = =
220 [g 5 2 . B g E--E B
= = = = w B 7] e Y 2
€ = Q3 g = c =) @ o
215 s s z 2 e b S A
" 1 3 o W " . 9 o
10 o ouw g o o 5 S
R EINE 3 ¢ s8: 15g 3
g z 8 g £ S & 3 3 £
5 : B3 8 15 2 = 2 e 8 =
0 o o = 8 o a S S
LKAS ISP Control, PR LKAS ISP

Breakdown & Actuate Breakdown

Fig. 4. Time and energy profiling of LKAS.

B. Coarse-grained Approximation

In this work, we apply coarse-grained approximations to the
ISP by skipping one or more sub-stages within the ISP (see
Fig. 3(a)). We believe that coarse-grained approximations can
give highest performance and energy gains. However, if not
done judiciously, they will result in high quality implications
on the QoC of LKAS. To analyze this, we examine the
sensitivity of QoC to each ISP stage of LKAS. Testing all
possible stage combinations is intractable as it results in an
exponential search space with high computational overheads.
So, we start by skipping the entire ISP at once, which failed
due to lack of any detailed features in the output image. Then
we performed experiments by skipping one stage at a time.
In these experiments, we noticed that skipping the demosaic
stage causes LKAS to fail entirely, resulting in a vehicle crash.
This is due to the fact that PR algorithms do not take the Bayer
pattern into account. So, we conclude that QoC of LKAS is
highly sensitive to the demosaic stage. Skipping other stages
also resulted in the vehicle to crash intitally. However, minor
modifications to the PR stage made it working (explained in
Section IV-C). It is also noticed that skipping compression
negatively impacts the energy and QoC of LKAS. The reason
is that skipping compression increases the amount of data

2A typical target platform for LKAS implementation will have a real-time
OS. We consider the minimum per image to reduce the impact of cache misses

due to the non-real-time OS (ubuntu 18.04). Considering the median per stage
compensates the impact of image workload variation.

TABLE I
CONSIDERED COARSE-GRAINED APPROXIMATION SETTINGS

Setting ISP Stages Description
SO DM, DN, CM, GM, TM, C Accurate (all stages included)
S1 DM, CM, GM, TM, C Skip Denoising

S2 DM, DN, GM, TM, C Skip Color Mapping
S3 DM, DN, CM, T™M, C Skip Gamut Mapping
S4 DM, DN, CM, GM, C Skip Tone Mapping
S5 DM, DN, C Keep only Denoising
S6 DM, CM, C Keep only Color Mapping
S7 DM, GM, C Keep only Gamut Mapping
S8 DM, T™M, C Keep only Tone Mapping

DM: Demosaic, DN: Denoise, CM: Color Mapping,

GM: Gamut Mapping, TM: Tone Mapping, C: Compression
transmitted between DRAM and processor, and accessing
DRAM is both slow and expensive in terms of energy. A
second set of experiments is performed by keeping one stage
and disabling the rest of the pipeline. For these experiments,
we keep the demosaic as well as the compression stage for
reasons previously mentioned. The quality implications of
these experiments are reported in Section V. Based on the
above discussions, we choose nine different approximation
settings (see Table I), which are used for further trade off
evaluation between QoC, degree of approximation, memory
and energy.

C. Impact of ISP Approximation on Subsequent Stages
Approximating the ISP stage of LKAS has quality impli-
cations on other subsequent stages as well, especially, the PR
stage. It is observed during experimentation that certain ap-
proximated image streams (obtained from S1-S8) are not prop-
erly handled by the PR stage, resulting in the failure of LKAS
operation. A close investigation shows that the color masking
step, which performs a per-pixel static thresholding on the
image, fails to identify the lane markers. To counter this, we
use Otsu’s binarization algorithm which dynamically identifies
an optimal threshold by operating on bimodal histograms.
The downside to this approach is the higher computational
complexity of dynamic thresholding over static thresholding.
So, we added a quality check which first performs static
thresholding, and switches to dynamic thresholding if and only
if static thresholding results in corrupted data. This results in
proper LKAS operation across all approximation settings.

V. EXPERIMENTAL RESULTS

I. Experimental Setup: We evaluate the nine different ap-
proximation settings mentioned in Table I using the IMACS
SiL. simulator for LKAS. We consider two different scenarios:
a straight road with an initial positional bias for the vehicle
from lane center, a curved road with no initial positional bias
from lane center. The V-REP simulation step is set to 5 ms
and the vehicle speed is set to 80 km/hr.

I1. Quality Metrics: We evaluate the approximation quality of
settings SO to S8 using the Structural Similarity (SSIM) index.
The SSIM index for two images m, n is defined as:

(QMmMn + Cl)(zgnln + 02)
(13, + 13 + C1) (03, + 0% + C2)

SSIM(m,n) = 3)

where i, Un, Om, 0n and o.,,, are the local means,
standard deviations, and cross-covariance for images m, n. C1,
Cs are constants. High SSIM loss signifies images with higher
visual difference. For evaluating the QoC of the proposed IBC
system, we consider the following four metrics:
1) Mean Square Error (MSE): mean cumulative sum of the
squared errors, i.e. "
MSE = 1 Z(y[k} — reference)? 4)
n i=1
where n is the no. of samples and y[k] is the value of
the k*" sample. A lower MSE implies a better QoC.
2) Settling Time (ST): time required for y[k] to reach and
stay within a certain range (5% in this work) of the final
reference value. A lower ST implies a better QoC.
3) Power Spectral Density (PSD): power present in the
signal as a function of frequency, per unit frequency.
A lower PSD for control input u[k] implies that less
energy is required and hence a better QoC.
4) Maximum Control Effort (MCE): maximum control ef-
fort is maxy||u[k]||. A lower MCE implies better QoC.
III. QoC-Approximation Trade offs: There are two main
aspects to the QoC-Approximation trade offs that needs to be
emphasized. First, the loss in image quality due to approxi-
mation may degrade the QoC of LKAS. Second, the reduced
sensing time (7) due to approximation may improve the QoC
due to faster sampling of the controller. The interplay between
these two aspects determines if we gain or lose in the final
QoC. We discuss these aspects below.

---- Baseline (S0) @ MSE[] STEEE MCE[CJ PSD[CJ SSIM

N
o

lower than baseline is better higher than baseline is better

0w I

-

=
o

LR

S1 S2 S3 sS4 S5 S6 S7 S8

4
o

o -
) 15}
T
(1 — MSEnorm), (SSIM — 1)

[MSE, ST, MCE, PSDlorm

o
)

0
S1 S2 S3 S4 S5 S6 S7 S8

(a) QoC performance without timing improvements (b) QoC versus Degree of Approximation

Fig. 5. Analysis of QoC degradation due to image quality loss. Results are
shown for a straight road scenario.

1) QoC degradation due to loss in image quality

For this evaluation, all the approximation settings from S1
to S8 are simulated using the sensing-to-actuation delay of
the accurate version SO (7y). No timing improvements due to
approximation are considered. Fig. 5(a) shows the performance
of the four QoC metrics, MSE, ST, MCE and PSD, for
different approximate settings S1-S8, each corresponding to
different levels of quality loss in output images. All results
are normalized to the accurate setting SO (baseline). We notice
that ST for S4-S7 degrade compared to the baseline due to
higher oscillations in output. But all the approximation settings
perform relatively similar to baseline in terms of MSE & PSD,
sometimes even improving on it. This proves that ISP pipelines
optimized for human vision are an overkill for LKAS.

Fig. 5(b) shows the trade offs between QoC and degree of
image approximation. We consider MSE as the QoC metric for
this study. We notice that even though some settings produce
images with high SSIM loss (more than 80% for S6, S7),

they have minor impact on QoC. For instance, S7 and S8
have the same QoC as the baseline, even though S7 has 85%
SSIM loss, while S8 has only 11% SSIM loss. High SSIM
loss signifies images with higher visual difference in terms of
contrast, white balance, tint etc. However, the lane marking
features are not affected by these visual tunings, which results
in proper LKAS operation. This explains the minor impact of
high SSIM loss on QoC. This also shows that approximating a
subsystem has different quality implications when considered
as part of a bigger closed-loop system compared to considering
it as a standalone component.

2) QoC improvement due to reduced sensing delay

In this experiment, we evaluate the impact of reduced
sensing delay on QoC of LKAS by considering the timing
improvements obtained from approximation. Fig. 6(b) shows
the reduced sensing-to-actuation delay for each approximate
setting S1-S8 (normalized to S0). These reduced delays are
considered for the sampling period of the controller.

---- Baseline (SO) N MSE[J] STHEE MCE[] PSD [ISPEZ3 PRI Control] Actuate

1.2 1.2
lower than baseline is better lower than baseline is better
£1.0 1.0 =
-
o
008 K] !
o [
206 £0.6
I 2
0 0.4 204
4
02 -‘ 0.2
0.0 ! ! | ! 0.0

Sl S2 S3 sS4 S5 S6 ST S8 S1 S2 S3 S4 S5 S6 S7 S8

(a) QoC performance with timing improvements (b) Runtime reduction due to approximation

Fig. 6. Analysis of QoC improvement due to reduced sensing delay. Results
are shown for a straight road scenario.

Fig. 6(a) shows that reduced sensing delay has a major
impact on the improvement of QoC. We observe upto 32%
(S8), 42% (S1), 75% (S7) and 27% (S7) improvements in
MSE, ST, PSD and MCE respectively. The negative impact
on QoC due to image quality loss is not as significant as the
positive impact of reduced sensing delay. This results in a
better final QoC for LKAS.

O Projectiongoc - memory plane ~=~="Paretofrontooc versus emory @ Projectionqoc - energy piane ==~=paretofrontqoc versus energy
- ° MSEnorm
G 1.05
(o]
o ¢} °

e
©

(weugsy) 200
° °
9 m

g
&

8\
0z o7 W 0.65

(b) Curved Road Scenario

0.7
(a) Straight Road Scenario

Fig. 7. Pareto fronts showing trade offs between QoC, Energy, Memory.

IV. QoC-Energy-Memory Trade offs: Fig. 6(a) shows that
there are multiple approximation settings (S3, S4, S5, S6, S7,
S8), which give similar improvements in the overall QoC of
LKAS. But this shows a partial picture. We are interested in
solutions which not only improve QoC, but also the energy
efficiency and memory footprint of the system.

A Pareto analysis between QoC, energy and memory is
shown in Fig. 7 for both straight & curved road scenarios. S4-
S8 turn out to be Pareto-optimal. We obtain energy benefits of

upto 84% for significant QoC gains (28% for straight, 11% for
curve in S5). For the same QoC gains, memory footprint of
the system is reduced by 29% (see S5 in Fig. 7). Overall QoC
degrades for S2 in case of a curved road (see Fig. 7(b)). This
is due to marginal timing improvements of S2, resulting in a
higher impact of image quality loss on QoC. The QoC-energy
Pareto solutions (S5, S6, S8) keeps fewer stages in the ISP.
This gives the most reduction in the sensing delay, thus, not
only improving QoC, but also consuming least energy.

VI. CONCLUSION AND FUTURE WORK

Image-based control (IBC) systems use image signal pro-
cessing to pre-process the camera sensor data and obtain
feedback information. Image signal processing pipelines are
compute-heavy and their long processing delays negatively
influence the performance of IBC systems. In this work, we
apply coarse-grained approximation to reduce this delay while
guaranteeing proper functionality. We show an in-depth study
on how the degree of approximation influences the closed-
loop quality-of-control (QoC), memory utilization and energy
consumption. We evaluate our technique using a software-in-
the-loop framework for a lane keeping assist system (LKAS).
We show energy and memory reduction of upto 84% and
29% respectively, for 28% QoC improvements. Future work
aims to validate the technique using a hardware-in-the-loop

framework.
REFERENCES

[1] K. Bengler et al., “Three decades of driver assistance systems: Review
and future perspectives,” IEEE ITSM, 2014.

S. Mohamed et al., “Optimising quality-of-control for data-intensive
multiprocessor image-based control systems considering workload vari-
ations,” in DSD, 2018.

V. Chippa et al., “Analysis and characterization of inherent application
resilience for approximate computing,” in DAC, 2013.

[4] M. Buckler et al., “Reconfiguring the imaging pipeline for computer
vision,” in ICCV, 2017.

H. Esmaeilzadeh et al., “Neural acceleration for general-purpose approx-
imate programs,” in [EEE/ACM MICRO, 2012.

H. Jiang et al., “Learning the image processing pipeline,” IEEE Trans-
actions on Image Processing, 2017.

S. De et al., “Designing energy efficient approximate multipliers for
neural acceleration,” in DSD, 2018.

A. Raha et al., “Approximating beyond the processor: Exploring full-
system energy-accuracy tradeoffs in a smart camera system,” IEEE
TVLSI, 2018.

S. Hashemi et al., “Approximate computing for biometric security
systems: A case study on iris scanning,” in DATE, 2018.

A. Raha et al., “Embedding approximate nonlinear model predictive
control at ultrahigh speed and extremely low power,” IEEE Transactions
on Control Systems Technology, 2019.

J. Ragan-Kelley et al., “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in ACM SIGPLAN PLDI, 2013.

J. Kosecka et al., “Vision-based lateral control of vehicles,” in Proceed-
ings of Conference on Intelligent Transportation Systems. 1EEE, 1997.
R. C. Dorf et al., Modern control systems. Pearson, 2011.

P. C. Young et al., “An approach to the linear multivariable servomech-
anism problem,” International journal of control, 1972.

S. Mohamed et al., “IMACS: a framework for performance evaluation
of image approximation in a closed-loop system,” in MECO, 2019.

E. Rohmer et al., “V-REP: a versatile and scalable robot simulation
framework,” in IROS, 2013.

K. L. Murdock, 3ds Max 2012 bible. John Wiley & Sons, 2011.
Randy Frank, “Steering in the Right Direction,” Electronic Design, 2016.
E. Rotem et al., “Power-management architecture of the intel microar-
chitecture code-named sandy bridge,” IEEE Micro, 2012.

[2]

[3]

[5]
[6]
[7]
[8]

[9]
[10]

(1]

[12]

[13]
[14]

[15]
[16]
[17]

(18]
[19]

