DESIGN, AUTOMATION & TEST IN EUROPE

09 – 13 March 2020 · ALPEXPO · Grenoble · France The European Event for Electronic System Design & Test

Approximation Trade Offs in an Image-Based Control System

Sayandip De, Sajid Mohamed, Konstantinos Bimpisidis, Dip Goswami, Twan Basten, Henk Corporaal Eindhoven University of Technology, The Netherlands

Preliminaries: Approximate Computing

Example: Lossy Compression

Example: Lossy Compression

Existing Literature

Image Processing benefits from Approximate Computing!

Farhana Sharmin Snigdha¹, Deepashree Sengupta¹, Jiang Hu² and Sachin S. Sapatnekar¹, ¹Department of ECE, University of Minnesota² ²Department of ECE, Texas A&M University

{sharm304,sengu026,sachin}@umn.edu, jianghu@ece.tamu.edu

18 December 2020

But they are always part of bigger systems.

Focus of this presentation

Image-approximation in-the-loop

• Video

• Source: https://vimeo.com/192179726

Lane keeping assist system (LKAS)

Lane keeping assist system (LKAS)

Raw Image Data

Impacts the control performance of IBC systems

Reduce Sampling Period (h)

Reduce Sampling Period (h)

Reduce Sampling Period (h)

Reduced Sensing-to-Actuation Delay (τ)

Reduced Sensing-to-Actuation Delay (τ)

Apply Approximations + Reduce Sampling Period(h)

Reduced Sensing-to-Actuation Delay (τ)

Apply Approximations + Reduce Sampling Period(h)

Apply Approximations + Reduce Sampling Period(h)

What should we approximate?

Profiling

• Intel i9 8-core, 200 different images

What should we approximate?

Profiling

• Intel i9 8-core, 200 different images

What should we approximate?

Profiling

• Intel i9 8-core, 200 different images

Do we really need a vision optimized pipeline for control?

18 December 2020

Reduced Execution Time

18 December 2020

Reduced Execution Time

Loss in Image Quality

18 December 2020

Reduced Execution Time

Loss in Image Quality

 \rightarrow shorten both sampling period h and delay τ

 \rightarrow better control performance

 \rightarrow inaccurate computation of state y_L

 \rightarrow errors might be significant

Their interplay determines if we gain or lose on IBC performance

Impact on Image Quality

Low SSIM [More Noise]

Setting	g ISP Stages	Description
S 0	DM, DN, CM, GM, TM, C	Accurate (all stages included)
S 1	DM, CM, GM, TM, C	Skip Denoising
S2	DM, DN, GM, TM, C	Skip Color Mapping
S 3	DM, DN, CM, TM, C	Skip Gamut Mapping
S4	DM, DN, CM, GM, C	Skip Tone Mapping
S 5	DM, DN, C	Keep only Denoising
S 6	DM, CM, C	Keep only Color Mapping
S7	DM, GM, C	Keep only Gamut Mapping
S 8	DM, TM, C	Keep only Tone Mapping

Impact on Image Quality

- Features of image may not be detected
 - Algorithm should be resilient to approximation
 - Application-specific testing needed!

Without considering improved timing

Without considering improved timing

Without considering improved timing

Without considering improved timing

- Performance deteriorates up to 18% for approximated images (S3, S4, S5)
- For the rest, performance is the same as accurate (S0)

18 December 2020

But timing is improved due to approximation!

Considering improved timing

Apply Approximations + Reduce Sampling Period(h)

Results: Degree of approximation vs QoC

Considering improved timing

QoC performance with timing improvement

Reduced sensing delay has improvements in Quality-of-Control (QoC)

Results: Degree of approximation vs QoC

Considering improved timing

18 December 2020

Results: Degree of Approximation vs Energy

Setting	ISP Stages	Description
S 0	DM, DN, CM, GM, TM, C	Accurate (all stages included)
S 1	DM, CM, GM, TM, C	Skip Denoising
S2	DM, DN, GM, TM, C	Skip Color Mapping
S 3	DM, DN, CM, TM, C	Skip Gamut Mapping
S4	DM, DN, CM, GM, C	Skip Tone Mapping
S5	DM, DN, C	Keep only Denoising
S 6	DM, CM, C	Keep only Color Mapping
S 7	DM, GM, C	Keep only Gamut Mapping
S 8	DM, TM, C	Keep only Tone Mapping

Conclusions

• Image-based control suffers from long processing delay

Conclusions

• Image-based control suffers from long processing delay

• Image-approximation is one promising approach to deal with long delay and save compute energy

Conclusions

• Image-based control suffers from long processing delay

• Image-approximation is one promising approach to deal with long delay and save compute energy

https://github.com/sayandipde/approx ibc

Thank You

Contact

