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Abstract—Intelligent motion control is integral to modern
cyber-physical systems. However, smart integration of intelligent
motion control with commercial and industrial systems re-
quires domain expertise, industrial ‘know-how’ of the production
processes, and resilient adaptation for the various engineering
phases. The challenge is amplified with the adoption of advanced
digital twin approaches, big data and artificial intelligence in the
various industrial domains. This paper proposes the IMOCO4.E
reference framework for the smart integration of intelligent
motion control with commercial platforms (e.g. from SMEs)
and industrial systems. The IMOCO4.E reference framework
brings together the architecture, data management, artificial
intelligence and digital twin viewpoints from the industrial users
of the large-scale ‘Intelligent Motion Control under Industry4.E’
(IMOCO4.E) consortium. The framework envisions a generic
platform for designing, developing, and implementing novice and
complex motion-controlled industrial systems. Refinements and
instantiations of the framework for the IMOCO4.E industrial
cases validate the framework’s applicability for various industrial
domains throughout the engineering phases and under different
constraints imposed on the industrial cases.

Index Terms—reference framework, smart system integra-
tion, AI, digital twin, data management, cyber-physical systems,
mechatronics, motion control, edge computing

I. INTRODUCTION

Intelligent motion control systems are critical in modern in-
dustrial environments that require precise and complex motion
control [1] for efficient and reliable operations. These systems
integrate advanced technologies such as smart sensors [2],
intelligent algorithms [3], novel computing platforms [4] and
smart actuators to enable real-time monitoring and control of
cyber-physical systems [5], [6]. Smart sensors play a critical
role in intelligent motion control systems [7] by providing real-
time feedback on the position, velocity, acceleration, and other
parameters of the physical system being controlled. Smart
actuators, on the other hand, enable precise control of motion
by applying forces and torques to the physical system.

Intelligent algorithms [8] are the backbone of intelligent
motion control systems as they process the data from smart
sensors to decide how to control the system. These algorithms
can be designed using various techniques, including artificial
intelligence (AI) and machine learning [9], [10], to enable
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intelligent control of complex systems. They are increasingly
used in various industrial applications and domains, including
(semiconductor) manufacturing [11], packaging, robotics [12],
autonomous vehicles [13], [14], and healthcare. Intelligent
motion control systems offer numerous benefits over tradi-
tional motion control systems, including improved accuracy,
reliability, and efficiency, with reduced maintenance costs and
downtime.

However, the challenge is that the smart integration of intel-
ligent motion control systems with commercial and industrial
systems [15] is a complex task requiring significant domain
expertise, industrial ‘know-how’ of the industrial processes
and resilient adaptation for the various engineering phases.
Advancements in digital twin (DT) approaches, big data, and
AI amplify this challenge due to its complexity and the need
to integrate these novel methods with the existing brownfield
systems [16]. As intelligent motion control is a fundamental
building block for systems in multiple industrial domains [17],
a standardised integration approach that considers digital
twins, data management, and AI is lacking. This makes it dif-
ficult for start-ups, small and mid-size enterprises (SMEs) and
academic partners to develop commercial platforms seamlessly
integrating with brownfield industrial systems.

This paper summarises the reference framework developed
within the IMOCO4.E project [18] that is a successor of the
I-MECH project [19]. The framework envisions a generic plat-
form for designing, developing, and implementing novice and
complex motion-controlled industrial systems. Refinements
and instantiations of the framework for the IMOCO4.E indus-
trial cases are also provided, and they validate the framework’s
applicability for various industrial domains throughout the
engineering phases and under different constraints imposed
on the industrial cases. These results were obtained after the
project’s first year with contributions from many European
partners (industrial, SME and academic).

This paper is organised as follows: The IMOCO4.E con-
cepts and terminology is explained in Section II. The method-
ology for defining the reference framework is explained in
Section III. The main part is the description of a reference
framework provided in Section IV. Some refinements and
instantiations are proposed in Section V. Finally, conclusions
and ideas for future work are given in Section VI.



Fig. 1: The IMOCO4.E reference framework’s architecture viewpoint
II. IMOCO4.E CONCEPTS AND TERMINOLOGY

• Brownfield and Greenfield in the context of the
IMOCO4.E project - The brownfield architecture charac-
terises the existing legacy systems (software, hardware,
or platform) that would be part of the corresponding
Pilots, Demonstrators or Use cases during the IMOCO4.E
framework development and integration. The greenfield
architecture characterises the envisioned systems (soft-
ware, hardware, or platform) on top of the existing
legacy systems that would be part of the corresponding
Pilots, Demonstrators or Use cases during the IMOCO4.E
framework development and integration.

• BBs (Building blocks) – technological system compo-
nents (hardware, software, sensors, actuators, etc.) which
can be reused in various industrial domains. There are 10
BBs defined in the IMOCO4.E project [18].

• Layers – Cloud-to-edge vertical view that related ref-
erence framework to well-adopted automation pyramid.
The four layers are illustrated in Fig. 1.

• Pilots – Framework applications defined at the machine
level. In the IMOCO4.E project, five Pilots are de-
fined - tissector, semiconductor manufacturing, packag-
ing, healthcare robotics and mining/tunneling.

• Demonstrators – Framework applications defined at the
industrial production line level. Four Demonstrators are
defined - shaver blades, plastic molding, warehouse lo-
gistics and cosmetics production.

• Use Cases – Partial applications on commercial produc-
tions of motion control ecosystem. Four Use cases are

defined - industrial drive for smart mechatronics applica-
tions, CNC for production, tactile robot teleoperation and
collaborative robotic platform.

• Digital twin (DT) – Special real-time aspect of con-
necting virtual machine models to physical devices. In
the IMOCO4.E framework, a digital twin comprises five
dimensions [20] – the physical entity, virtual model, data,
service, and connection or interaction.

III. METHODOLOGY

The design process includes identifying the shortcomings
of the state-of-the-art reference architectures, identifying the
needs for future smart production from the mechatronics and
robotic point of view, gathering and characterizing the brown-
field and greenfield architectures of the Pilots, Demonstrators,
and Use cases from the industrial partners in the IMOCO4.E
consortium, defining the requirements and specifications of the
different layers in the project on a BB level, and adhering to
the guidelines of the IMOCO4.E methodology and toolchains.

The steps leading to the design of the IMOCO4.E reference
framework are detailed below.

1) Identifying shortcomings from the state-of-the-art refer-
ence architectures [21]. Understanding the current state-
of-the-art and identifying the gaps were essential for
defining the IMOCO4.E reference framework. The state-
of-the-art methods for motion-driven high-tech applica-
tions and shortcomings were reported in [22].

2) Identifying the needs for future smart production from
the mechatronics and robotic point of view. The ref-
erence framework should address these needs through



relevant requirements. The needs summary gathered per
BB defined the requirements for (some of) the relevant
topics. The needs were reported in [23].

3) Gathering and characterising the brownfield architec-
tures of the Pilots, Demonstrators, and Use cases from
the industrial partners in the IMOCO4.E consortium.
The constraints and interfacing options with the brown-
field architecture in the generic IMOCO4.E reference
framework were reported in [24].

4) The first iteration of the detailed requirements and
specifications of the different layers in the IMOCO4.E
project was reported in [25], [26]. The requirements
and specifications were also detailed on a BB level and
must be adhered to while designing the final IMOCO4.E
reference framework.

5) The guideline of the IMOCO4.E methodology and
toolchains reported in [27] must be adhered to.

6) Gathering and characterising the greenfield architectures
from industrial partners in the IMOCO4.E consortium.

Gathering the greenfield reference architectures from Pilots,
Demonstrators, and Use case owners of the IMOCO4.E con-
sortium is critical to the design process. A request was sent to
the industrial partners to gather the envisioned (greenfield) ar-
chitecture that the Pilots, Demonstrators, and Use case owners
will demonstrate in the IMOCO4.E project. The suggested way
of gathering the greenfield architecture was provided, which
involves starting with the envisioned (greenfield) architec-
ture(s) that will be demonstrated in the project, modifying the
brownfield reference architecture, and providing two versions
of the diagram – one public and one confidential.

The final design of the IMOCO4.E reference framework
is based on the above considerations and the refinements
provided by the industrial partners. The paper presents an
example of refinement of the reference architecture and the
way of working for refining the architecture. The public
diagrams of the greenfield reference architectures gathered
from the industrial partners are showcased in this paper to
illustrate the refinements from the IMOCO4.E consortium.

IV. IMOCO4.E REFERENCE FRAMEWORK

A. Architecture viewpoint
The architecture viewpoint of the IMOCO4.E reference

framework is illustrated in 1. The functional breakdown of
the components of the reference framework and its overall
specifications at an abstract level is detailed below.

• Sensors are the input devices which provide an output
with respect to a specific physical quantity. It is a
hardware component for detecting or measuring physical
properties or parameters by converting signals from one
energy domain to the electrical domain. E.g., temperature
sensor, proximity sensor, pressure sensor, position sensor,
touch sensor, etc.

• Actuators are components that tie a control system to
its environment. The actuator is a machine component
responsible for moving and controlling a mechanism or
system, for example, opening a valve.

• Smart I/O refers to smart sensors and smart actuators.
Smart sensors may include some local (or edge) process-
ing. Smart actuators may include some local intelligence
(and processing).

• Server (IT) infrastructure is the backbone of a factory
or production line for interactions with human users and
factory operations, e.g. integrating the machine operation
with SAP (systems, applications and products in data pro-
cessing), ERP (enterprise resource and planning), MES
(manufacturing execution system) or SCADA (supervi-
sory control and data acquisition) solutions.

• Data storage for the IMOCO4.E reference framework
refers to the data necessary for the AI and DT platforms.
Instance data refers to the data for a machine instance,
and the aggregation data refers to the data for the digital
twin aggregation (DTA) and AI analytics aggregation.
Section IV-B explains the data management infrastructure
for data storage.

• Interfaces are the most necessary components in the
IMOCO4.E reference framework. Interfaces can be field-
buses, real-time communication protocols, wireless com-
munication protocols, internet communication and so on.
As shown in Fig. 1, interfaces can be present between any
two architecture layers on the same machine or between
architecture layers on two different machines through
Layer 4. The interface between Layer 1 and Layer 2
is typically a real-time communication interface, e.g.
ethernet for control automation technology (EtherCAT)
or time-sensitive networking (TSN).

• A platform refers to the combination of software (tasks,
messages, mapping, scheduling) and hardware (compu-
tation, communication, memory). The software perfor-
mance relies heavily on the predictability and reliability
of the deployed hardware. The software can overcome
errors to a certain degree when a few hardware functions
fail. Still, the overall performance will degrade when
input signals, i.e., data, are corrupted in hardware before
these are in the ‘digital’ domain. Therefore, the hardware
used within the IMOCO4.E project must provide reliable
signals and data.

The platform components considered in the IMOCO4.E refer-
ence architecture are the following.

• Edge platforms (Layer 1): When data needs to be pro-
cessed at the edge, the framework will rely on edge
platforms. E.g. for high-speed vision processing, an edge
platform is essential since sending image streams over the
fieldbus is not ideal due to limited fieldbus bandwidth.

• Motion control platforms (Layer 2) are mainly required
for accurate and predictable feedback control at a high
sampling rate (in the kHz range). Such control can be
centralised or decentralised. The state of the components
controlled by the platforms can also be monitored, and
necessary predictive maintenance actions can be taken.

• A central platform (Layer 3), e.g. a personal computer
(PC), is required for coordinating the machine opera-



(a) AI viewpoint with BB and layer interactions (b) AI lifecycle viewpoint

(c) Digital twin viewpoint with BB and layer interactions (d) Digital twin lifecycle viewpoint

Fig. 2: The IMOCO4.E reference framework’s AI and digital twin (DT) viewpoints
tion. Process control, feedforward control, parameter set-
ting/tuning, machine status monitoring, predictive main-
tenance and diagnostics are some of the tasks/applications
that run on the central platform.

• AI platform (Layer 4) refers to the AI analytics and
training infrastructure. The AI platform consists of AI an-
alytics instances and AI analytics aggregation (explained
in Section IV-C).

• The DT platform (Layer 4) refers to the software and
hardware necessary for the DT instances (DTI) and DT
aggregations (DTA) modelling, operation, monitoring,
maintenance, and update. DTI and DTA are explained
in Section IV-D.

B. Data management viewpoint
The data management viewpoint of the IMOCO4.E refer-

ence framework is part of the BB9 solution (cybersecurity
and trustworthy data management) [18] and is outlined in the
data storage block in Layer 4 of Fig. 1 and the interfaces
are detailed in Fig. 2a and Fig. 2c. The BB9 facilitates trust-
worthy data management and network-based data exchange
between IMOCO4.E components by aggregating data from
multiple and diverse providers at a unified resource and re-
distributing the data to the intended recipients both in real-
time and asynchronously. The functional components in the
data management viewpoint are detailed below.

• Distributed Messaging System (DMS) enables the real-
time data exchange of heterogeneous, non-binary, semi-
structured information among multiple IMOCO4.E com-

ponents in parallel. The DMS implementation relies on
the Apache Kafka framework [28].

• Big Data Repository (BDR) ingests, transforms and per-
sistently stores the data flowing through the BB9 DMS.
The BDR exposes the stored data to other IMOCO4.E
components through an efficient query and retrieval sys-
tem based on the Elastic Search technology [29].

• Field Gateway Proxy collects data from devices at the
edge, transforms it to Kafka events and publishes the
events to the BB9 DMS.

• Cyber-Security Module provides comprehensive protec-
tion against unauthorised access to the BB9 DMS through
end-to-end authentication mechanisms for devices, mi-
croservices and users.

• Data Visualisation Toolkit visualizes live data flowing
through the DMS and historical data stored in the Big
Data Repository.

• Time-Sensitive Networking (TSN) Platform guarantees
packet transport, in terms of bounded low latency, low
packet delay variation and low packet loss in data traffic
managed by BB9.

The BB9 solution is optimised for supporting Big Data
analytics operations involving AI. It is delivered as a highly
scalable system with a customisable microservice architecture
composed of re-usable components that can be adapted to meet
the needs of brownfield implementations. BB9 offers increased
reliability and fault tolerance based on advanced replication
features, supports secure interfaces and data access based on



comprehensive authorisation and authentication features, and
ensures network communication performance levels for time-
critical applications.

C. Artificial intelligence (AI) viewpoint

The AI viewpoint with BB interactions of the IMOCO4.E
reference framework is illustrated in Fig. 2a. The general
principle is that data is collected from Layer 1 (sensors, edge
platforms and actuators) and used by the AI framework for
modelling, training, optimisation, analytics and/or services.
Additionally, it is convenient to have data from Layer 2 (e.g.
from BB5 [18] internal signals) and configuration data (e.g.
from Layer 3) available in the data collection, so that the
dataset is always complete and consistent.

The dataflow from Layer 1, Layer 2 and Layer 3 to the AI
framework and back to the corresponding BBs is illustrated in
Fig. 2a. BB8 deals with AI-based components and forms the
core BB for integrating the AI framework in the IMOCO4.E
methodology. BB8 will specify in detail the AI infrastructure,
tools and deployment methods in future deliverables. The data
necessary for the AI framework is collected, secured and
stored based on the methodology developed as part of BB9.

The AI instance refers to the AI framework for a machine
instance (or some machine components). AI aggregation refers
to the aggregation of all AI instances. The functionality of
an AI instance and AI aggregation varies based on the stage
in the machine lifecycle and is illustrated in Fig. 2b. During
the machine lifecycle’s design phase, an AI instance’s main
functionality is modelling and training. The AI model that is
suited for the design objective and satisfies the requirements
is identified. Typically, the machine prototype data is used to
train the AI model. The AI modelling and training could also
start with machine simulation (before the machine prototype
is available). Then, the trained AI model is deployed in the
machine prototype for testing and validation. The AI instance
is optimised for inference performance using the assembled
machine data and characteristics during the manufacturing
phase. The optimised inference AI model is then deployed
in the assembled machine for testing and validation. Finally,
during the services phase of the machine lifecycle, the AI
instance is used for data analytics and offering other services,
e.g. process optimisation. The data monitored by the machine
in operation is the input for the AI analytics algorithm, and
the AI instance offers optimal services. The AI platform
coordinates the AI instance. If required, the AI platform can
be independent (with its own hardware and software).

D. Digital twin (DT) viewpoint

The DT viewpoint with BB interactions is illustrated in
Fig. 2c. The general principle here is that the physical entity
comprises the machine (the sensors, platforms, actuators and
interfaces represented through the various BBs and other
components, e.g. COTS). The DT platform represents the
virtual entity of the DT. The DT virtual models are part of the
DT platform. The services and analytics are performed through
the AI framework (BB8). The BB9 handles the data collection,

storage and cyber-security. The DT platform uses the data
from the physical twin, services, and models. Finally, the DT
platform sends the parameter changes for optimal machine
performance to the relevant physical components or provides
warnings or predictive maintenance schedules to the human
users, e.g. operators and service engineers.

The DT viewpoint during a machine’s lifecycle is illustrated
in Fig. 2d. A DT prototype is a virtual description of a
prototype machine containing all the information to create
the physical twin prototype. The DT prototype can vary from
component level to system level. A DTI refers to a specific
instance of a physical machine that remains linked to the
specific machine throughout its lifecycle. A DTA combines
all the digital twin instances.

A DT is helpful throughout the machine’s lifecycle. Dur-
ing the design phase, virtual design models form the basis
of the machine prototype development. Machine prototype
specifications are required by the virtual models for designing
an efficient system through iterative optimisation and virtual
verification. A DT can be used during the design phase - to
design and test a new algorithm and explore use cases before
deploying it to the actual physical system. The physical system
may not yet be available at this point. A DT also expedites the
test time (and hence faster time-to-market) since the physical
system has limited test capacity. Testing on the physical
system can be expensive if hardware fails due to testing.
The DT prototype is used for real-time sensing, control, and
process optimisation during the manufacturing phase. A DTI
during the service phase enables predictive maintenance, fault
detection and diagnosis, state monitoring, process optimisation
and so on.

V. REFINEMENTS AND INSTANTIATIONS

In this section, we will refine the IMOCO4.E reference
framework for some of the industrial cases in the IMOCO4.E
project. The refinements also detail how to use the refer-
ence framework during the various engineering phases and
by various personnel (developer, operator, service engineer,
etc.). Due to space constraints, we limit the refinements and
instantiations to 3 Pilots, 2 Demonstrators and one Use case.
The instantiations for all 13 industrial cases will be reported
in future work.

A. Refinement and instantiation for tissector (Pilot 1)

Fig. 3 outlines the IMOCO4.E reference framework re-
finement for Pilot 1, tissector. Layer 1 of tissector abstracts
I/O, (quadrature) encoders, physical hardware, motors, and
cameras. The I/O, motors (smart actuators), and encoders
(smart sensors) are interfaced with the embedded real-time
motion controller (Layer 2) through a field bus. The standard
EtherCAT interface will be used during the development
phase, and a customised hardware interface will be used
during the operational phase. The cameras (smart sensors) are
interfaced with the application processor (Layer 3). Layer 2
for the tissector has the embedded real-time motion controller
platform that controls multiple (servo/stepper) axes, provides



Fig. 3: Pilot 1 tissector architecture refinement from Sioux.
The envisioned BBs that will be integrated are annotated.
interfaces for smart sensors and smart actuators in Layer 1 and
generates setpoints based on the input from the application
processor (Layer 3). The algorithms in Layer 2 are also
developed using Simulink software. Layer 2 interfaces with
Layer 3 through a motion path or setpoint interface (via
network). Layer 3 performs the workflow and scheduling,
scrape path computation, image processing, calibration and
provides a local GUI for user interaction.

Layer 4 comprises data collection and distribution services,
DT model simulator, research and development (R&D) client,
laboratory production (config), service and maintenance client,
holodeck server, holodeck client, application value-added ser-
vices, certification portal and the laboratory infrastructure.
The holodeck server and client enable virtual reality (VR)
integration for the tissector. The DT model simulator enables
the digital twin.

Fig. 4: Pilot 1 tissector simulation infrastructure instantiation
based on the refined reference framework.

Fig. 4 instantiates the Pilot 1 reference framework for
defining the simulation infrastructure during the development
phase. The simulated components are highlighted in the figure.

Fig. 5: Pilot 3 architecture and example of refinement in the
absence of a machine prototype.
The materials (slides, scraper, tubes) can also be simulated
using a DT and VR. Stubs are also provided for the laboratory
infrastructure. In addition, the Layer 1 sensors are simulated,
and Layer 1 behaves as a system simulator.

B. Refinement for Pilot 3 - High-speed packaging

Fig. 5 outlines the IMOCO4.E reference framework re-
finement for Pilot 3. This architecture refinement is to face
the absence of a machine prototype and real-world sensors
for Pilot 3. The main objective of this Pilot is to assess
the feasibility of improving automation for quality checks
and alarm detection throughout the high-speed packaging
process. The AI-based algorithms, in combination with the
smart control platform, will help to ensure good quality output
and prompt reaction to possible alarms.

To cope with the absence of a machine prototype for Pilot 3,
the open data set(s) available online will be selected and used.
Some of these data will be used to train suitable AI algorithms,
and the remaining part of the data set will be streamed in real
time to the real-time smart-control platform. In detail, this
approach will cope with the fact that in Pilot 3, sensors are
also unavailable; therefore, simulated sensors are enabled to
verify and validate the BBs. In this perspective, the real-world
sensors will be replaced by simulated instances of real-time
data generated via dedicated boards and transmitted to the
Real-Time Smart-Control Platform of Layer 3.

C. Refinement for Pilot 4 - Healthcare robotics

Fig. 6 outlines the Pilot 4 architecture refinement along
the continuous integration/continuous development (CI/CD)
infrastructure. A clear distinction and interface between the
development phase and the production phase components are
illustrated. The motors and encoders are the actuators and
sensors (Layer 1). For the development phase, additional
(smart) obstacle avoidance sensors are envisioned and interface
to the application layer (Layer 3). The servo drives and the
I/O module span across Layers 1 and 2. For CI/CD, the
developers use a motion control platform that spans Layers



Fig. 6: Pilot 4 refinement with CI/CD infrastructure.
2 and 3 for mechatronics development, integration and tests.
The mechatronics development uses Simulink software and
custom codes for multi-input multi-output (MIMO) feedfor-
ward and feedback control. A personal development laptop
with Simulink software and the required tools is used for
development/integration. The laptop can access the CI/CD
infrastructure (Layer 4), and the code for deployment to the
production machine can be uploaded/generated. DTs, com-
bined with a Virtual (Reality) Test environment, are part of the
infrastructure (Layer 4) and enable fast and safe development
based on these models.

The motion control platform for the production machine
executes the feedforward and motion algorithms in real time.
The motion control platform is also the bus master for the
EtherCAT that interfaces with the servo drives. Local feedback
control is executed directly on the drives. The operator of
the machine interacts with the host PC, and the code for
deployment is updated using the CI/CD infrastructure. During
each phase in the machine lifecycle (development, factory and
field), the ‘big data’ from the machine is fed to the cloud
(Layer 4) database. Monitoring data from the machines and
training DT models enable condition monitoring and predictive
maintenance services.
D. Refinement for Demonstrator 2 - Plastic molding

Fig. 7 outlines the refinement for Demonstrator 2 for a
plastic molding production line. Nowadays, equipping tools
with AI to allow continuous monitoring is a key component
in industrial production. Demonstrator 2 targets to over mold
wireless sensors (temperature, pressure) and radio-frequency
identification (RFID) tags on plastic parts. A controller device
could read the data transmitted by the sensors in real-time.
The Demonstrator intends to transpose the logic of Industry
4.0 into the final product to introduce new functionalities in
tools for plastic injection and create an innovative product with
more added value and high incorporation of R&D.

E. Refinement for Demonstrator 3 - Warehouse logistics

Demonstrator 3 includes all the elements required for the
transformation from a classic automated system to a modern

Fig. 7: Demonstrator 2 architecture refinement
autonomous system for internal transport tasks. This means
that known standardised brownfield solutions from automation
must be extended with new (greenfield) capabilities, so-called
senses, for the necessary perception of the environment. This
leads to an extension of sensor technology and the addition of
novel intelligent solution strategies.

Fig. 8: Demonstrator 3 architecture refinement.

Fig. 8 illustrates framework refinement for Demonstrator 3,
where machines are replaced by autonomous ground vehicles
(AGVs). In Layer 1, in addition to the existing vehicle control
sensors, camera and radar sensors for intelligent detection of
semantics like pallets, vehicles, persons and labels were added.
Layer 1 is tasked with the perception of objects (persons,
vehicles or load), pose estimation of the load carrier, short-
term navigation and collision avoidance, and pose (e.g. pallet)
load handling.

Using industry-proven training methods (acquisition, sim-
ulation and labelling), the functional output of the green-
field vision modules of Layer 2 is validated, and functional
interaction with the behaviour-relevant brownfield modules
of Layer 3 can be guaranteed. The basic functions of the
modules from Layer 3 are localisation, mapping and the
resulting planning for autonomous load handling. Industry-
relevant modules such as global and local planning rely on
industry standards such as robot operating system (ROS). In
Demonstrator 3, the vehicle’s behaviour (control) is composed
of the pre-processing by Layer 2 and the final implementation
of the vehicle instructions in Layer 3. Based on the information



flow from the vehicles combined with external conditions,
clear instructions to the subordinate vehicles come from Layer
4. Several vehicle systems are combined to form a fleet and
are controlled in Layer 4.

F. Use case 4 - Collaborative robotic platform

The collaborative robotic platform provides a 7DoF robotic
arm that can be employed in applications requiring fast and
flexible adoption of complex motion trajectories in hybrid
environments requiring close cooperation of robots and human
workers. Potential application domains include nondestructive
inspection and testing or material handling. Fig. 9 provides a
refinement of the platform’s control architecture.

Fig. 9: Use case 4 architecture refinement
Layer 1 contains sensors and actuators embedded in the

integrated joints of the robotic arm. Layer 2 deals with
decentralised control of the servo drives. Layer 2 is connected
to the sensors/actuators layer by corresponding cabling. Ether-
CAT communication link is established to Layer 3, with an
industrial PC (IPC) serving as a centralised motion controller
responsible for coordinated motion planning and synchronisa-
tion. Layer 4 establishes a monitoring, maintenance and drive
commissioning system capable of retrieving and processing
relevant machine data.

VI. CONCLUSIONS AND FUTURE WORK

The IMOCO4.E reference framework for intelligent mo-
tion control systems is detailed in this paper, along with
refinements and instantiations from some of the industrial
cases from the IMOCO4.E project. The proposed reference
framework is summarised based on the inputs from many
European partners of the large-scale IMOCO4.E consortium. A
stand-alone designer (e.g. start-ups, SMEs or academia) of an
intelligent motion control system can refer to the IMOCO4.E
reference framework’s architecture, data management, AI and
digital twin viewpoints for developing their system adhering to
the industry standards and interfaces and for smart integration
with existing industrial systems. Future work involves vali-
dating the IMOCO4.E reference framework instantiations by
demonstrating the smart integration of tangible building block
solutions with the defined industrial cases.
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