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Summary

Multiprocessor Image-Based Control:
Model-Driven Optimisation

Over the last years, cameras have become an integral component of mod-
ern cyber-physical systems due to their versatility, relatively low cost and multi-
functionality. Camera sensors form the backbone of modern applications like
advanced driver assistance systems (ADASs), visual servoing, telerobotics, au-
tonomous systems, electron microscopes, surveillance and augmented reality.
Image-based control (IBC) systems refer to a class of data-intensive feedback con-
trol systems whose feedback is provided by the camera sensor(s). IBC systems
have become popular with the advent of efficient image-processing algorithms,
low-cost complementary metal–oxide semiconductor (CMOS) cameras with high
resolution and embedded multiprocessor computing platforms with high perfor-
mance. The combination of the camera sensor(s) and image-processing algo-
rithms can detect a rich set of features in an image. These features help to compute
the states of the IBC system, such as relative position, distance, or depth, and sup-
port tracking of the object-of-interest. Modern industrial compute platforms offer
high performance by allowing parallel and pipelined execution of tasks on their
multiprocessors.

The challenge, however, is that the image-processing algorithms are compute-
intensive and result in an inherent relatively long sensing delay. State-of-the-art
design methods do not fully exploit the IBC system characteristics and advantages
of the multiprocessor platforms for optimising the sensing delay. The sensing de-
lay of an IBC system is moreover variable with a significant degree of variation
between the best-case and worst-case delay due to application-specific image-
processing workload variations and the impact of platform resources. A long vari-
able sensing delay degrades system performance and stability. A tight predictable
sensing delay is required to optimise the IBC system performance and to guaran-
tee the stability of the IBC system. Analytical computation of sensing delay is often
pessimistic due to image-dependent workload variations or challenging platform
timing analysis. Therefore, this thesis explores techniques to cope with the long
variable sensing delay by considering application-specific IBC system character-
istics and exploiting the benefits of the multiprocessor platforms. Effectively han-
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dling the long variable sensing delay helps to optimise IBC system performance
while guaranteeing IBC system stability.

First, this thesis presents the model-driven scenario- and platform-aware de-
sign (SPADE) flow for IBC systems modelling, analysis, design and implementa-
tion. The SPADE flow expressly targets multiprocessor system-on-chip (MPSOC)
platforms. The thesis develops the SPADE flow with a focus on the composable
and predictable multiprocessor system-on-chip (COMPSOC) platform. The thesis
further presents an adaptation of the SPADE flow for modern industrial platforms
– NVIDIA Drive PX2 and NVIDIA AGX Xavier, which are closed-source and diffi-
cult to predict. The SPADE flow is validated using the performance evaluation
for IMAge-based Control Systems (IMACS) framework developed as part of this
thesis. The SPADE flow is explained incrementally in this thesis starting with the
platform-specific aspects and later showing how the application-specific aspects
are integrated.

The platform-specific aspects explored in this thesis are application parallelism
and pipelining of the control loop. First, we examine the case of application paral-
lelism with no pipelining allowed for the control loop. A scenario-aware dataflow
(SADF) models the IBC system, capturing both the image-workload variations
and the parallelism in the image-processing as workload scenarios for a given plat-
form allocation. The contribution of this thesis concerning this case is the rela-
tion between dataflow timing analysis and control timing parameters to obtain a
tight predictable sensing delay considering implementation constraints. Second,
pipelining without parallelising the sensing application is considered. The chal-
lenge with pipelining is that the parameters which are relevant for practical im-
plementation – inter-frame dependencies, system nonlinearities and constraints
on system variables – are typically not addressed. As a contribution, this thesis
presents a model-predictive control (MPC) formulation for pipelined IBC systems
considering workload variations, inter-frame dependencies, system nonlinearities
and constraints on system variables. Third, this thesis considers pipelining and
parallelism together. It presents model transformations for modelling, analysis
and mapping IBC systems using SADF. The model transformations allow to re-
late the dataflow timing analysis to the control timing parameters and to optimise
the mapping while considering pipelining and parallelism together.

The first application-specific characteristic explored in this thesis is the impact
of image-workload variations on the IBC system performance. The first contri-
bution is the modelling and designing of IBC systems by explicitly considering
image-workload variations using a scenario-based design approach. The image-
workload variations are identified and modelled as a discrete-time Markov chain
(DTMC), where each Markov state represents a workload scenario. At runtime,
the IBC system switches between workload scenarios based on image workload.
Having numerous switching workload scenarios results in an unstable system or
degrades system performance. This thesis presents a controller synthesis method
based on the Markovian jump linear system (MJLS) formulation. System scenar-
ios are identified that abstract multiple workload scenarios based on camera frame
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rate, sensing delay and sampling period. The DTMC is then recomputed, consid-
ering only the system scenarios, and the controller is synthesised based on the
MJLS formulation. At runtime, the IBC system implementation is switching be-
tween the system scenarios. It is shown that the presented approach has a better
performance compared to the state-of-the-art. This thesis also provides design
guidelines on the applicability of state-of-the-art control design methods for given
IBC system requirements, implementation constraints and system knowledge.

The second application-specific characteristic explored in this thesis is the im-
pact of approximate computing on the IBC system performance. Approximate
computing trades off accuracy in the signal processing for gains in response time.
Approximating the camera image-signal processing (ISP) stage helps to drastically
reduce the sensing delay at the cost of errors in the sensing processing. The second
contribution of this thesis is the approximation-aware design of an IBC system.
First, the resilience of the given IBC system to different approximation choices is
analysed. Second, for each approximation choice, the sensing delay is computed,
and the error due to approximations is quantified. The approximation-aware con-
troller is then designed, for each approximation choice, by considering the sensing
delay and modelling the quantified error due to approximations as sensor noise.
For the analysis and validation, the thesis presents an IMACS with support for
software-in-the-loop (SIL) simulation and hardware-in-the-loop (HIL) validation.
The IMACS framework models the environment and dynamics using a physics
simulation engine, e.g. Webots, CoppeliaSim or Matlab, and interacts with the IBC
algorithm in the SIL or HIL setting.

In conclusion, this thesis aims to efficiently cope with the long variable sens-
ing delay of IBC systems so that engineers can deploy IBC systems efficiently in
time- and safety-critical domains. The thesis copes with the long variable delay by
considering both application-specific characteristics and platform-specific con-
straints to optimise IBC system performance and stability. The proposed SPADE

flow exploits the application-specific characteristics and platform-specific con-
straints of IBC systems to cope with the long variable sensing delay and optimise
the system performance. The SPADE flow explicitly considers image-workload
variations, the approximation of ISP, parallelisation of sensing processing, and
pipelining of the control loop. The SPADE flow is targeted for a predictable and
composable COMPSOC platform. This thesis also details how the SPADE flow
can be adapted for industrial platforms. The techniques presented in this thesis
achieve substantial control performance improvements compared to the state-of-
the-art approaches for a given platform allocation while guaranteeing stability.
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Introduction

Technology has been growing exponentially over the last few decades. The con-
stant evolution of computers, the internet, wireless telecommunication, smart-
phones, cameras, and other modern technologies are drastically transforming the
world we perceive and are improving our standard of living. If not for the cam-
eras that captured my childhood days through photos and videos as memoirs, the
world I grew up in would have been nothing but fiction for the current and future
generations. Nowadays, cameras have become an integral part of our daily lives -
be it for taking selfies using our smartphone to post on social media or for collabo-
rating with my colleagues over a video call. Cameras, as sensors, have also become
the "eyes" to perceive the surroundings for modern automotive systems, robots,
autonomous systems and manufacturing systems.

Image-based control (IBC) systems that use cameras as sensors, are increas-
ingly popular due to their low-cost and high versatility. Cameras enable the per-
ception of depth, relative position, geometry, relative distance, colour, and track-
ing of the object-of-interest. As such, IBC systems are now an integral part of in-
dustrial cyber-physical systems (CPSs). CPSs refer to a class of modern industrial
systems with tight interaction between computation, communication and control
elements (the cyber part), and physical processes such as motion, heating/cooling,
vibration, wear and tear (the physical part) within these systems. Designing CPSs
requires an integrative design approach that allows for optimisation coping with
the tight coordination between the cyber and the physical components [54, 72,
114]. The IBC system is compute-intensive and a standalone IBC system behaves
similar to a CPS.

This thesis focuses on optimising the design and implementation of IBC sys-
tems in the resource-constrained CPS domain. The case study used throughout
this thesis is a lane-keeping assist system (LKAS), though the methods are directly
applicable to similar systems in the CPS domain. In this introductory chapter,
first, the history of the camera and its modern significance are briefly explained.
Second, the context, definition and scope of IBC systems are illustrated. Then, an
overview of the state-of-the-art is given and the research challenges with the con-
tributions of this thesis are enumerated. After providing an overview of the design
and optimization flow elaborated in this thesis, finally, the motivating case study
and the thesis outline are detailed.

1
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2 Introduction

1.1 Evolution of cameras

"A camera is an optical instrument that captures a visual image. The camera body
has a small hole (the aperture) that allows light through to capture an image on a
light-sensitive surface (usually photographic film or a digital sensor). Lenses focus
the light entering the camera, and the size of the aperture can be widened or nar-
rowed. A shutter mechanism determines the amount of time the photosensitive
surface is exposed to light" [23]. The invention of the camera has been traced back
to the work of Alhazen (Abū ‘Al̄i al-H. asan ibn al-H. asan ibn al-Haytham). Alhazen
invented the pinhole camera camera obscura, and explained its scientific princi-
ples in his magnum opus Book of Optics (Kitāb al-Manāz. ir) in the 11th century
AD [3]. The camera obscura was originally used for viewing solar eclipses instead
of looking directly at the sun and damaging the eye.

Figure 1.1: The evolution of the camera [45].

The camera has evolved over the last millennium in technology, functional-
ity and versatility. A brief overview of the evolution of the camera (that uses visible
light) is illustrated in Fig. 1.1. Artists used the first pinhole cameras to draw the out-
line of their paintings from real landscapes. Then, the cameras were used to pre-
serve memories and store the image information in a physical format. The land-
mark moment was the invention of the digital camera, where the image is recre-
ated from the light falling on a charge-coupled device (CCD) instead of a photo-
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graphic film. The first digital camera was invented by Llyod and Sasson in 1975 and
patented in 1978 [80]. However, at that time, it did not gain the necessary recog-
nition it deserved [43] due mostly to managerial decisions. One of the reasons
for non-acceptance was that it took 23 seconds to record a captured image into
a cassette tape (for storage). The first professional digital single-lens reflex (SLR)
camera was created by Sasson and Hills in 1989 and patented in 1991 [116]. "It had
a 1.2 megapixel sensor, and used image compression and memory cards" [43].

Figure 1.2: Worldwide shipments of photo cameras [109].

The invention of the professional digital camera revolutionised the camera mar-
ket and also increased the global camera market size and revenue. The growth of
photo camera sales is illustrated in Fig. 1.2. Two interesting points to note are: (i)
the domination of digital cameras over film cameras that wiped out the normal
use of film cameras; and (ii) the drastic decline in sales of digital photo cameras.
The latter is due to the advancements in technology and the integration of high-
quality cameras in smartphones and tablets. Buying a modern smartphone with a
high-quality camera is generally preferred over a single-purpose photo camera.

Advancements in low-cost complementary metal–oxide semiconductor
(CMOS) image-sensor technology [39] and Moore’s law [95] enabled the faster in-
tegration of cameras in smartphones and modern industrial systems. Moore’s law
predicted that the number of transistors in integrated circuits would double every
two years, and this has been happening over the last many decades. This enabled
the miniaturisation of the size of the semiconductor component. Alternatively,
many more CMOS sensors, processors and memories can be densely packed into
a semiconductor component of the same size. This reduced the overall cost and
size of the camera, thus enabling the widespread use of cameras in smartphones,
laptops, security devices, video surveillance, drones, autonomous systems, mod-
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ern industrial systems, and so on. For instance, the latest Samsung Galaxy S21 FE
5G smartphone has four cameras - a 12MP ultra-wide camera, a 12MP wide-angle
camera, an 8MP telephoto camera, and a 32MP selfie camera [50].

Figure 1.3: Proliferation of cameras in modern vehicles [133].

The latest Tesla autopilot system has eight cameras [128], which are necessary
for the three-dimensional perception of the surrounding environment [41]. In the
automotive domain, there is an immense proliferation of cameras in modern ve-
hicles (illustrated in Fig. 1.3). According to an industrial report from Yole [141],
the number of cameras in a single vehicle is expected to grow even further. Yole
estimates 11 cameras per vehicle by 2024 for functionalities like surround-view,
advanced driver assistance systems (ADASs), night vision, e-mirror replacement
and driver monitoring. Yole predicts that cameras would also be an integral part
of fully autonomous systems. Additionally, different types of cameras (based on
the wavelength of light) are gaining significance for varied purposes, such as hy-
perspectral cameras [11], thermal-imaging cameras [76] (using infrared light) and
laser imaging (used in lidar sensors [78]). Cameras have thus proven to be irre-
placeable for modern applications and systems in the coming decades.

1.2 Image-based control systems

Cameras are now an integral part of modern (industrial) systems and are becom-
ing increasingly popular in mixed-criticality systems. A mixed-criticality system is
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a system that can execute several applications of different criticality levels - safety-
critical, mission-critical and low-critical [22]. The criticality levels are formally de-
fined, for example, as safety integrity levels in the IEC 61508 standard [12] and au-
tomotive safety integrity levels (ASILs) in the automotive ISO 26262 standard [60].
The versatility of the camera sensor allows an image captured by a single camera
sensor to be used for multiple mixed-criticality applications. In the automotive
domain, for example, cameras are used to perceive the surrounding environment,
enabling safety-critical autonomous driving and use for non-critical applications
like drive recording.

IBC systems are a class of data-intensive feedback control systems whose feed-
back is provided by image-based sensing using cameras as sensors. Data-intensive
feedback control systems are common nowadays due to advancements in CPSs
[135]. IBC systems have become popular with the advent of efficient image pro-
cessing algorithms and low-cost CMOS cameras with high resolution [29]. The
combination of the camera and the image-processing algorithm gives necessary
information on parameters such as relative position, geometry, relative distance,
depth perception and tracking of the object-of-interest. This enables the effective
use of low-cost camera sensors to enable new functionality or replace expensive
sensors in cost-sensitive industries like automotive [29, 101, 110]. Applications of
IBC are found in robotics [29], autonomous vehicles [40, 101], advanced driver as-
sistance systems (ADAS) [16], electron microscopes [44], visual navigation [25] and
so on.

The popularity of modern IBC systems can be attributed to

• the impact of Moore’s law [95] and the constant breakthroughs in semicon-
ductor manufacturing technology. This enabled the availability of powerful
multiprocessors at relatively low cost and size, and also paved the way for
the miniaturisation of CMOS cameras.

• the availability of low-cost high-resolution CMOS cameras with good quality
and small size.

• the versatility of the camera images and the breakthroughs in artificial in-
telligence (AI) technology and deep-learning algorithms [71]. Using deep-
learning methods and algorithms, a multitude of features can be efficiently
extracted from camera images and used for a variety of mixed-criticality ap-
plications.

• the industrial adoption of heterogeneous platforms and the breakthroughs
in graphical processing units (GPUs) and neural processing units (NPUs).
Examples of such developments are Tesla’s full self-driving (FSD) computer
[126] and NVIDIA’s Drive AGX platform [97]. The FSD computer is based on
a system-on-chip (SOC) that integrates industry standard components such
as central processing units (CPUs), image-signal processing (ISP), GPUs,
and NPUs.
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Figure 1.4: An image-based control (IBC) system: (a) block diagram; (b) Gantt chart for a
typical IBC implementation; (c) workload variations captured as a distribution.
In the context of the thesis, workload refers to the image workload (unless spec-
ified differently). Image workload refers to the number of features in the image
that should be processed. For example, more features in an image typically im-
plies a higher workload.

In this thesis, the focus is on IBC systems that are functionally critical and on
feedback control systems whose state is measured by the image-based sensing and
processing, i.e., state feedback. The case study of an automotive LKAS system is
used to explain the concepts and results of this thesis. A typical IBC system is il-
lustrated in Fig. 1.4 (a). A camera captures image frames at a pre-defined constant
frames per second fps, i.e., the frame rate, from the dynamic system environment
(with the camera frame-arrival period fh = 1

fps ). An ISP processes the RAW camera
image frames in the Bayer domain and converts it to the standard RGB image for-
mat, e.g. JPEG. Then, a compute-intensive image-processing algorithm processes
the image frames to detect features in the image such as objects, traffic signs and
lanes. These features are then used to compute the states of the system, such as
relative position and distance [29]. A controller computes the control input for ac-
tuation (e.g., change in direction) using the computed states. The actuation task
applies the computed control input to the IBC system.

A typical feedback control implementation sequentially and periodically (with
sampling period h) executes the sensing and processing task (S), control compute
task (C) and the actuating task (A) (as illustrated in Fig. 1.4 (b)). In an IBC system,
the sensing task may have a long, variable execution time and incur a long sensing
delay. Variability in execution time may occur due to variation in image-processing
workload and/or in the platform load caused by other applications. The key chal-
lenge is to deal with this high dynamic computation demand while guaranteeing
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performance and meeting safety requirements such as stability. A long variable pro-
cessing delay results in dropping some camera frames from processing.

These variations can be captured statistically using a probability distribution
[1] (illustrated in Fig. 1.4 (c)). It is interesting to note that this delay distribution is
platform-dependent. Platform-related parameters - for instance, number of pro-
cessing cores, processor clock speed, memory, and communication bandwidth -
have a direct impact on the observed delay. A long worst-case sensing delay leads
to a long sensor-to-actuator delay τ (the time between the start of a sensing task
and the end of the corresponding actuation task) and thus results in degraded con-
trol performance [8, 117].

In this thesis, we develop approaches to cope with a long variable sensing delay
exploiting the benefits of a multiprocessor platform and the application-specific
IBC system characteristics. The platform-aware aspects explored in this thesis
that exploit the benefits of a multiprocessor platform are - application parallelisa-
tion and pipelining of the control loop. Parallelisation refers to executing sensing
subtasks in parallel and thereby reducing the delay compared to the sequential im-
plementation. Pipelining refers to the pipelined execution of the control loop over
multiple processing cores thereby reducing the effective sampling period (the time
between the start of two successive sensing tasks). The two application-specific
characteristics we exploit are - the image workload variations and approximate
computing. Image workload variations occur due to the variations in the number
of features in the captured images and the platform load. Approximate computing
trades off accuracy in the signal processing for gains in response time and energy.

1.3 Implementation platforms

A platform refers to the combination of hardware resources (computation, com-
munication, and memory) and the software (tasks, messages, mapping and schedul-
ing) required to deploy an algorithm/application on the hardware effectively. The
execution time of tasks - sensing and processing (S), control compute (C), and ac-
tuation (A) - of an IBC system is dependent on the platform configuration. The
relatively straightforward way to reduce the long sensing delay is to have a pro-
cessor with a high clock speed. However, this increases the cost of the processor.
Moreover, the scaling of clock speed has reached its limits because of physical con-
straints in chip manufacturing and operation. Another option to cope with long
sensing delay is to have a platform with multiprocessor capabilities that enable
concurrent parallel and pipelined execution of tasks. A multiprocessor platform is
economical due to the impact of Moore’s law and is common nowadays.

In this thesis, two kinds of multiprocessor platforms are considered for the
IBC system implementation. First, a composable and predictable multiprocessor
system-on-chip (COMPSOC) platform [55] is considered. The COMPSOC platform
offers a composable and (timing) predictable implementation for the designer.
The results of this thesis can be effectively applied to such predictable platforms
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Figure 1.5: A COMPSOC platform with two processor tiles and a memory tile connected
through a network-on-chip (NOC).

without any adaptation. Second, state-of-the-art industrial platforms are consid-
ered. Predictability and composability are usually not offered in an industrial plat-
form. We adapt our design approach for the industrial platforms NVIDIA Drive PX2
and NVIDIA AGX Xavier [47] to demonstrate its applicability in an industrial con-
text. Our design approach is also applicable for more recent industrial platforms
like the Tesla FSD computer [126] and NVIDIA Drive AGX [97].

1.3.1 COMPSOC

COMPSOC offers a tile-based architecture [122] (see Fig. 1.5). Each tile has a pro-
cessor P , memory M , communication assist C A and network interface N I . Each
processor tile has a microblaze processor, the memory tile contains an external
memory interface, e.g., dynamic random access memory (DRAM), and the NOC
provides interconnection between the tiles. The platform is predictable with tight
bounds on worst-case execution times (WCETs) of tasks and composable so that
applications sharing the platform do not interfere with each other. A scheduler
performs (re)configuration and time-triggered task execution.

1.3.2 NVIDIA Drive PX2

The NVIDIA Drive PX2 [97] platform consists of two Tegra SOCs that communicate
to each other via ethernet. Each Tegra SOC has two CPU clusters (see Fig. 1.6). One
cluster contains four ARM Cortex A57 cores and the other contains two NVIDIA
Denver2 cores. The clusters are connected through a high-performance network
interconnect. Each of the Tegra SOCs also has two GPUs - an integrated Pascal
GPU (IGPU) and a discrete GPU (DGPU) with maximum clock rates of 1.27 and
1.29 GHz respectively. The IGPU has 256 CUDA cores and the DGPU has 1154
CUDA cores. The GPUs are accessed via the respective CPUs in the SOC. The
Ubuntu 16.04 LTS operating system (OS) runs on the CPU platform.

1.3.3 NVIDIA AGX Xavier

The NVIDIA AGX Xavier platform (illustrated in Fig. 1.7) consists of a Xavier SOC
and other components explained in [47]. The CPU complex consists of four het-
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Figure 1.6: NVIDIA Drive PX2 platform structure. LPDDR4 and DDR5 are the memory
blocks. Each CPU cluster also has internal instruction and data memory (not
shown in the graph).

Figure 1.7: NVIDIA AGX Xavier platform block diagram. LPDDR4 and eMMC are the mem-
ory blocks. Each CPU cluster also has internal instruction and data memory (not
shown in the graph).

erogeneous dual-core NVIDIA Carmel CPU clusters based on ARMv8.2 with a max-
imum clock frequency of 2.26GHz. The GPU with a maximum clock frequency of
1.37GHz is accessed via the CPUs in the SOC. The Ubuntu 18.04 LTS OS runs on
the CPU platform.

1.4 State-of-the-art

This thesis explores techniques to cope with the long variable sensing delay by
considering application-specific IBC system characteristics and exploiting the ben-
efits of multiprocessor platforms. Effectively handling the long variable sensing
delay helps to optimise IBC system performance while guaranteeing IBC system
stability. State-of-the-art methods do not fully exploit the IBC system character-
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istics and advantages of the multiprocessor platforms for optimising the sensing
delay. The IBC system sensing delay is also variable with a significant degree of
variation between the best-case and worst-case delay due to application-specific
image-processing workload variations and platform characteristics. A long vari-
able sensing delay degrades system performance and stability. A tight predictable
sensing delay is required to optimise the IBC system performance and to guaran-
tee the stability of the IBC system. Analytical computation of sensing delay is often
pessimistic due to image-dependent workload variations or challenging platform
timing analysis.

Relevant literature deals with the following questions:

• What are the relevant overall design approaches for such embedded control
problems?

• What are the relevant IBC system modelling and analysis techniques?

• What are the techniques for IBC system design to deal with long delays in a
feedback control loop?

Design approaches: An IBC system is often designed based on the separation-
of-concerns principle between the control theory and embedded systems disci-
plines [7, 110]. Co-design of control and scheduling is another design paradigm
explored in the literature [24]. The emphasis is on platform-based design meth-
ods that take into account platform resource constraints while designing the con-
troller [7,53]. Contract-based design [113] is a platform-based design paradigm for
cyber-physical systems where the interactions between control theory and embed-
ded design are defined based on contracts.

From the embedded-systems discipline, a system-scenario-based design ap-
proach [51] is proposed where different behaviours (scenarios) of an application
are explicitly considered to avoid over-dimensioning or sub-optimal performance
due to worst-case design. Identifying, characterising and modelling these scenar-
ios and dealing with the runtime scenario transitions are specific for each appli-
cation and generally not trivial. In this thesis, we combine scenario-based and
platform-based design methods into a coherent scenario- and platform-aware de-
sign (SPADE) approach for IBC system design and implementation.

IBC system modelling: Model-based design [74,130] approaches focus on design-
ing applications based on abstract models of application and platform such that
the implementation is guaranteed to behave with predictable performance. Nu-
merous model-of-computation (MOC) are available in literature [26, 31, 124, 129].
The approaches in this thesis do not depend on a specific MOC. They need a MOC
that can capture the dynamic behaviours (scenarios) of the application, can anal-
yse timing and has support for platform-aware mapping analysis.

IBC system design - control engineering perspective: The main challenge in de-
signing an IBC system is to cope with the long sensing delay. Control engineers
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tackle a long delay using advanced state estimation [136], robust design [65], pre-
dictive control [81], observer-based [135] methods, and multi-rate sampling [49]
methods. These methods rely heavily on the system model and are vulnerable to
modelling errors with longer delays. Also, control engineers typically design an
IBC system considering the worst-case image workload [110] and do not explicitly
consider the platform constraints. In literature, workload variations are typically
considered only for sequential IBC implementation [46] and not for parallel and
pipelined implementations [112], [69]. In [82], pipelining is considered along with
variable delay. However, these approaches do not consider system nonlinearities,
i.e., the variations in system dynamics, and constraints imposed on the system
variables, which can be crucial when considering a practical implementation.

IBC system design - embedded systems perspective: Embedded systems engi-
neers aim to reduce processing delay and period by parallel implementations of
the algorithms using heterogeneous multiprocessor platforms having specialised
hardware such as GPUs [2] and FPGAs [66]. Pipelined control [69, 112] is another
approach targeting homogeneous multiprocessor implementations that reduce the
effective sampling period without changing the processing delay. Inter-frame de-
pendencies, i.e. the data or algorithmic dependencies between consecutive frame
processing, e.g. due to video coding [77] or visual tracking [120], and resource shar-
ing between pipes, which are crucial aspects for a practical pipelined IBC system
implementation, are not explicitly considered in the literature. Additionally, we
observe that an integral approach to pipelined parallelism can provide immense
benefits to the IBC system design and implementation. However, such an integral
approach is lacking in literature.

IBC system design - approximate computing perspective: Approximate comput-
ing is another technique that can help reduce the processing delay by trading off
computation accuracy for speed. Approximations reduce the compute workload
across algorithm, architecture and circuit levels. Commonly used algorithmic ap-
proximations are computation skipping [83], precision scaling [131] and replacing
error-resilient compute-intensive functions with neural networks [42]. A learn-
ing approach to design ISPs for new camera systems is proposed in [62]. At the
architecture level, research efforts have focused on both approximating general-
purpose processors [27] as well as domain-specific accelerators [33]. At the circuit
level, research efforts focus on manual design techniques for adders and multi-
pliers [63], as well as automated methodologies for designing energy-efficient ap-
proximate circuits [34].

Approximation benefits in a camera-based biometric security system, using an
iris recognition application, is showcased in [57]. An approximate smart camera
system is introduced in [104], using camera resolution scaling, reducing memory
refresh rate and computation skipping. An approximate ISP pipeline tuned for
computer-vision algorithms is designed in [21], by skipping selected ISP stages.
An algorithm-hardware co-designed system is showcased in [145]. However, these
approximation techniques do not consider a closed-loop feedback system. Ap-



1

12 Introduction

proximation decisions in a closed-loop system have quality implications at a later
point in time. Optimising a system while accounting for the temporal approximate
behaviour is not explored in any of the mentioned work.

1.5 Research challenges and contributions

The primary research question addressed in this thesis is:
How to cope with the long variable sensing delay in an IBC system?

This thesis deals with challenges to cope with the long variable sensing delay in
an IBC system and the scientific contributions are broadly classified into two di-
rections – exploitation of the benefits of the multiprocessor platforms through
a platform-aware design and exploitation of the application-specific IBC system
characteristics.

In this context, along the first line of research, we exploit the benefits of the
multiprocessor platforms through application parallelisation and pipelining of the
control loop. The approaches proposed in this thesis maximise the quality-of-
control (QOC) of the controller implementation for a given multiprocessor plat-
form allocation. In the following, we outline the three scientific contributions re-
lated to parallelisation, pipelining and pipelined parallelism.

Contribution 1 (SPADE flow for IBC system design considering parallelisation):
Parallelisation refers to executing sensing subtasks in parallel and thereby reducing
the delay compared to the sequential implementation considered before. A paral-
lel implementation is possible when multiple cores are allocated for the sensing
algorithm. It is, however, limited by the degree of parallelism of the sensing al-
gorithms. The state-of-the-art literature related to parallel implementation for an
IBC system does not consider workload variations which is crucial for maintaining
optimal closed-loop performance or QOC, as already explained. Moreover, a par-
allel implementation in an IBC system is highly influenced by platform-specific
parameters such as camera frame-rate, number of available cores and so on. At
the end, these design aspects lead to the two important control design parameters
– sampling period and delay. Starting with a given, often pessimistic, sampling
period and delay, like what can be noticed in the state-of-the-art [69], the overall
design often leads to a low QOC.

In this thesis, first, we introduce the SPADE approach for parallel implemen-
tation. The SPADE approach uses a formal model-of-computation – dataflow –
for the entire IBC system including sensor processing. This enables us to model
workload variation as well as platform-specific design parameters that are crucial
for design optimality of a IBC system. The contribution of this thesis concerning
this case is the relation between dataflow timing analysis and control timing pa-
rameters to obtain a tight predictable sensing delay considering implementation
constraints. The image workload variations are captured in workload scenarios
and modelled using a scenario-aware dataflow (SADF). Then, workload scenarios
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are mapped to the given platform allocation considering the platform constraints
such as the camera frame rate and the number of available cores. Mapping an
SADF results in a binding-aware graph.

In this thesis, we relate the latency and throughput of the binding-aware graph
to the delay and sampling period of the controller design. Our approach enables a
scenario- and platform-aware design and optimisation of the IBC system. Our ap-
proach exploits frequently occurring workload scenarios to optimise control per-
formance. During controller design, we then optimize performance and guarantee
stability by identifying appropriate system scenarios and by designing a switched
controller that switches between those scenarios. The initial proposed approach
assumes that the platform is predictable, i.e., the WCET of the sensing algorithm
for the same image input is bounded and predictable over multiple executions on
the platform. However, the execution times cannot be bounded for industrial plat-
forms. In this thesis, we also show how we can adapt our SPADE approach for
parallelisation for an industrial platform where we propose to use frequently oc-
curring task execution times instead of WCET.

The first contribution has been published in:

• Sajid Mohamed, Dip Goswami, Vishak Nathan, Raghu Rajappa, and Twan
Basten. A scenario-and platform-aware design flow for image-based control
systems. Microprocessors and Microsystems, 75:103037, 2020.

• Sajid Mohamed, Diqing Zhu, Dip Goswami, and Twan Basten. Optimis-
ing quality-of-control for data-intensive multiprocessor image-based con-
trol systems considering workload variations. In 21st Euromicro Conference
on Digital System Design (DSD), pages 320–327, 2018.

With respect to the state of the art, this thesis proposes the first formal model-
based design framework for the IBC system co-design that relates dataflow ana-
lysis and controller design. The SPADE approach brings together dataflow and
control formalisms in the same framework. This relation allows to bring in the op-
timisation techniques from the dataflow domain into the control timing parameter
optimisation. The proposed SPADE approach also makes a step forward towards
real-life implementation by detailing how the flow can be adapted for industrial
platforms. Both academic and industrial platforms could implement the SPADE

approach. software-in-the-loop (SIL) and hardware-in-the-loop (HIL) simulation
results validate our claim.

Contribution 2 (Extending the SPADE flow considering pipelining for IBC sys-
tem design): Pipelining refers to the pipelined execution of the control loop over
multiple processing cores. It is an alternative to exploit the availability of multiple
cores on the platform to address the challenge of long delay in an IBC system. In
an IBC system, a pipelined implementation implies the start of processing a new
camera frame while one or more frames are still being processed. In essence, this
increases the processing throughput of the frames, which reduces the closed-loop
sampling period h (the time between the start of two successive sensing tasks).
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Although such implementation does not reduce the sensing delay, a shorter sam-
pling period opens the door for achieving a higher QOC with an appropriate con-
troller design.

Given that multiple frames are processed simultaneously, a crucial aspect are
the inter-frame dependencies that some of the sensing algorithms might impose.
Inter-frame dependencies refer to the data or algorithmic dependencies between
consecutive frame processing, e.g., due to video coding [77] or visual tracking [120].
Moreover, for a real-life implementation, it is crucial to consider system nonlinear-
ities and constraints on system variables. System nonlinearities refer to the varia-
tions in system dynamics, and constraints need to be imposed on the system vari-
ables. For example, the maximum steering angle of the Udacity self-driving car is
set to +/- 25 degree [132] and the vehicle velocity is kept constant for the simula-
tions in [68]. While pipelined implementations for the IBC system is considered
in the state-of-the-art as potential direction [112], [69], the existing approaches do
not consider several key practical aspects needed for their real-life adoption.

As a contribution, this thesis presents an extended SPADE approach with an
adaptive predictive control formulation based on linear parameter-varying (LPV)
input/output (I/O) models for a pipelined multiprocessor implementation of IBC
systems while considering workload variations, inter-frame dependencies, system
nonlinearities and constraints, and thus makes a step forward towards real-life
adoption. The inter-frame dependencies are characterised using the platform con-
straints - camera frame rate and the number of available cores, and the control
timing parameters - delay and sampling period.

The second contribution has been published in:

• Sajid Mohamed, Nilay Saraf, Daniele Bernardini, Dip Goswami, Twan Bas-
ten, and Alberto Bemporad. Adaptive predictive control for pipelined multi-
processor image-based control systems considering workload variations. In
59th IEEE Conference on Decision and Control (CDC), 2020.

The state-of-the-art pipelined multiprocessor IBC implementation approaches do
not consider inter-frame dependencies, system nonlinearities and constraints on
system variables. This thesis proposes a model-predictive control (MPC) formula-
tion that consider these aspects and makes a step forward towards real-life adop-
tion. The simulation results and discussions validate our claim.

Contribution 3 (Extending the SPADE flow considering pipelined parallelism for
IBC system design1): In an IBC system, a long variable sensing delay results in a
long sampling period and a long delay from the controller viewpoint. To deal with
them, modern multiprocessor IBC implementations consider either parallelisa-
tion of the sensing task or pipelining of the control loop. In a pipelined imple-
mentation, the sampling period is shortened while the delay remains long. Such
implementation does not require knowledge of the internal processing structure

1The SPADE flow controller design is open sourced and can be accessed on github:
https://github.com/sajid-mohamed/SPADeControlDesign
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of the sensing workload. The benefit of such methods is restricted by the plat-
form parameters such as number of available cores and camera frame-rate. On the
other hand, in a parallelised implementation, the delay is shortened allowing for
a shorter sampling period. This line of approaches require computational insight
(i.e., model-of-computation) of the sensing task for a parallelised implementation.
Similar to the pipelined case, the benefits of parallelization methods are restricted
by the number of available cores and the degree of parallelism present in the sens-
ing algorithms. The impact of both parallelisation and pipelining together on the
QOC of IBC systems is not explored in the literature while it is rather obvious di-
rection given their complimentary nature.

This thesis proposes a model-based design method for multiprocessor IBC im-
plementation, considering both parallelisation and pipelining together. It presents
model transformations for modelling, analysis and mapping IBC systems using
SADF. The model transformations allow to relate the dataflow timing analysis to
the control timing parameters and to optimise the mapping while considering
pipelining and parallelism together. In this thesis, the particular problem we ad-
dress is: For a given platform allocation, what is the optimal degree of pipelin-
ing and degree of parallelisation required to maximise the QOC? A unified SPADE

algorithm is proposed that takes into account image-workload variations, inter-
frame dependencies and platform constraints. The application is efficiently mod-
elled and analysed using a scenario-aware dataflow graph, and an implementation-
aware switched controller is designed that optimises QOC and guarantees stability.
Two types of platforms are considered - predictable, e.g., COMPSOC, and indus-
trial platforms, e.g., NVIDIA AGX Xavier. The SPADE approach performs the best
when the platform is predictable and the execution times are bounded. In an in-
dustrial platform where the execution times cannot be bounded, an adaptation of
the SPADE approach is also proposed.

The third contribution has been published in:

• Sajid Mohamed, Dip Goswami, Sayandip De, and Twan Basten. Optimis-
ing multiprocessor image-based control through pipelining and parallelism.
IEEE Access, 9:112332–112358, 2021.

The state-of-the-art multiprocessor IBC implementation approaches do not con-
sider pipelined parallelism explicitly. This thesis details the pipelined parallelism
implementation along with the required model transformations for realizing SPADE

using the SADF MOC. This thesis also details the adaptation of the SPADE ap-
proach for industrial platforms for pipelined parallelism. SIL and HIL simulation
results validate our claim.

Further, as already explained, this thesis exploits the opportunities of two appli-
cation-specific characteristics - image-workload variations and approximate com-
puting. In the following, we outline the specific scientific contributions along these
two directions.

Contribution 4 (IBC system design considering workload variation): For sens-
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ing, an IBC system needs to process image workload, which is data-intensive and
experiences significant variation. Image-workload variations occur due to the vari-
ations in: i) the number of features in the captured images, and ii) the platform
load. Typically, an IBC system considers the worst-case image workload [110] and
the impact of these variations are not explicitly considered in the controller design.
Moreover, the platform constraints such as the number of available cores and cam-
era frame-rate are not considered in the state-of-the-art design approaches. Since
such approaches are built upon the worst-case characteristics, they often lead to
low overall QOC of the system for a given platform allocation.

In our proposed approach in this thesis, we profile all the workload relevant for
the IBC system, identify the frequently occurring workload scenarios, and model
the workload variations using a discrete-time Markov chain (DTMC). A DTMC
characterises the frequently occurring workload scenarios and the probability of
transition between these different scenarios. For a given workload scenario, we
further perform platform-aware optimization including binding and mapping to
multiple cores as well as optimized controller design. When the number of the
workload scenarios becomes high, it often become challenging to ensure stability
and high QOC. Then, system scenarios that abstract multiple workload scenarios
are identified based on platform constraints. Finally, a Markovian jump linear sys-
tem (MJLS) controller is designed for the system scenarios. We demonstrate sig-
nificant improvement in terms of QOC using the proposed method over the state-
of-the-art worst-case-based designs. With respect to the SPADE flow, the MJLS
controller is an alternative controller design method that explicitly models work-
load variation.

The fourth contribution has been published in:

• Sajid Mohamed, Asad Ullah Awan, Dip Goswami, and Twan Basten. Design-
ing image-based control systems considering workload variations. In 58th
Conference on Decision and Control (CDC), pages 3997–4004. IEEE, 2019.

In literature, variable sensor-to-actuator delay (resulting from the variable work-
load) was dealt with through switched linear controllers with either known or un-
known sequences of delay occurrences. These solutions either suffer from poor
performance (from unknown arbitrary delay sequences) or unrealistic assump-
tions (when knowledge of the exact delay sequence is not available in reality). This
thesis proposes an alternative controller design method based on the MJLS for-
mulation that models the delay occurrences as a DTMC. The simulation results
and discussions show that the proposed approach performs better when sufficient
system knowledge is available.

Contribution 5 (Approximation-aware IBC system design): Approximate com-
puting trades off accuracy in the signal processing for gains in response time and
energy. In this thesis, the focus is on how we use approximate computing for gains
in response time which is further exploited in the IBC system design. The gains in
energy, reported in [36], is excluded in this thesis as it is not the key goal in this the-
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sis. The camera ISP pipeline transforms a RAW image in the Bayer domain to pix-
els in the RGB domain through a series of image enhancing stages. Approximating
the camera ISP pipeline helps to drastically reduce the sensing delay at the cost of
errors in the sensing processing. There are various classes of approximation – fine
grained and coarse grained. In an IBC system, a few of these compute-intensive
image enhancing stages could potentially be skipped/approximated without com-
promising the IBC system functionality. Generally, usage of approximate com-
puting for ISP is an interesting direction given its potential to reduce the sensing
delay (which is a key challenge for designing an IBC system). However, approxi-
mate computing for the feedback control system is an unknown territory in litera-
ture. There are two key challenges – (i) how to model the effect of approximation
in the IBC system and guarantee stability and QOC in presence of approximation
in the feedback signal processing, (ii) how to test and evaluate the impact of such
a design paradigm since it is an important step to identify when and how much
approximation is suitable for a given design problem.

In this thesis, we first propose an integrated performance evaluation frame-
work that combines environments, controller design and computation platform.
The performance evaluation for IMAge-based Control Systems (IMACS) frame-
work2 helps to test and evaluate the impact of approximation in closed-loop feed-
back systems. First, the resilience of the given IBC system to different approxi-
mation choices is analysed. Second, for each approximation choice, the sensing
delay is computed, and the error due to approximations is quantified using the
IMACS framework. Then, an approximation-aware controller is designed, for each
approximation choice, by considering the sensing delay and modelling the quanti-
fied error due to approximations as sensor noise. The approximation-aware design
offers alternatives in terms of sensing (with approximate ISP) and controller (i.e.,
approximation-aware controller) in SPADE flow.

The IMACS framework is published in:

• Sajid Mohamed, Sayandip De, Konstantinos Bimpisidis, Vishak Nathan, Dip
Goswami, Henk Corporaal, and Twan Basten. IMACS: A Framework for Per-
formance Evaluation of Image Approximation in a Closed-loop System. In
8th Mediterranean Conference on Embedded Computing (MECO), pages 1–4,
2019.

In literature, a performance evaluation framework that can analyse the impact of
injecting errors in the image processing on the closed-loop IBC system perfor-
mance was not present. IMACS is the first open-source framework that enables
the performance evaluation of image approximation in closed-loop IBC systems.
SIL and HIL simulation results validate our claim.

The approximation-aware controller design is published in:

2The IMACS framework is open sourced and can be accessed on github: https://github.com/sajid-
mohamed/imacs
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• Sayandip De, Sajid Mohamed, Dip Goswami, and Henk Corporaal. Approxi-
mation-aware design of an image-based control system. IEEE Access, 8:
174568–174586, 2020.

• Sayandip De, Sajid Mohamed, Konstantinos Bimpisidis, Dip Goswami, Twan
Basten, and Henk Corporaal. Approximation trade offs in an image-based
control system. In Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), pages 1680–1685. IEEE, 2020.

In literature, image approximation and platform constraints are not explicitly con-
sidered in the design of the controller of the IBC system. This thesis proposes an
approximation-aware control design that takes as input the quantified error due
to approximation. SIL and HIL simulation results validate our claim.

1.6 SPADE flow overview

This thesis presents a scenario- and platform-aware design flow (SPADE) for IBC
systems that brings together the essence of key scientific contributions made in
this thesis (explained in Section 1.5). An overview of our SPADE approach is illus-
trated in Fig. 1.8, summarised below and explained in detail in subsequent chap-
ters.

1. Formal modelling of the IBC system: An IBC application is captured as an
IBC SADF considering workload variations W and the platform as a plat-
form graph. Further, an implementation-aware IBC SADF captures the
given design parameters - camera frame arrival period fh , maximum num-
ber of allowed pipes p, total number of available cores navl

c and allocated
processing cores for parallel execution per pipe n//

c . The design parameters
fully determine the implementation choice - non-pipelined without paral-
lelism, non-pipelined with parallelism, pipelined without parallelism and
pipelined with parallelism. The parallelism here refers to the parallel exe-
cution of sensing subtasks limited by the degree of parallelism of the IBC
application.

2. Analysis and design: We map the implementation-aware IBC graph for
each workload si ∈ W to the platform graph to obtain the binding-aware
graph G b

i for that specific workload using the SDF3 mapping flow [122]. G b
i

is a synchronous dataflow graph (SDFG) that models the mapping of the
implementation-aware graph to the platform graph. The mapping binds
each actor in the SDFG to a processing core in the platform graph. For the
ordering of execution of actors bound to the same core, a static-order sched-
ule is encoded in the SDFG. A throughput and latency analysis of G b

i yields
the sensor-to-actuator delay τi , and sampling period hi . For a pipelined
implementation, the throughput analysis of the worst-case image-workload
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Figure 1.8: Overview of our SPADE design flow for pipelined parallelism. W is the set of
varying workloads and wi , G b

i , τi , hi ,Ki and Fi are the workload, binding-
aware graph, sensor-to-actuator delay, sampling period, feedback gain and feed-
forward gain for a workload scenario si (determined by wi ∈ W ); G b

s , τs , hs ,Ks
and Fs are the corresponding parameters for an identified system scenario ss
(that abstract multiple workload scenarios). fh is the camera frame arrival pe-
riod, fd is the inter-frame dependence time, p is the number of pipes for pipelin-
ing, n//

c is the number of cores allocated for parallelism per pipe, and navl
c is the

total number of available cores. For the scope of the thesis, the pipelined imple-
mentation is always periodic.

scenario allows to compute the inter-frame dependence time fd (explained
later in Section 4.5.4). If fd > hi , the implementation-aware graph is up-
dated with the realisable period and τi and hi are recomputed. The con-
trollers are then designed for the resulting (τi , hi ) to obtain the controller
feedback and feedforward gains (Ki , Fi ). Trying to cater to the designed
workload scenarios at runtime means that we have a switching system. A
switching system with too many switching states is challenging for controller
stability and may result in poor performance. Hence, we aggregate multi-
ple workload scenarios with similar control timing parameters as a system
scenario. A system scenario ss abstracts multiple workload scenarios and
has a constant (τs , hs ) during implementation. A system configuration is de-
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fined as the combination of mapping and controller configurations, i.e. G b
s ,

τs , hs , Ks , and Fs (as explained later in Section 4.3.2). It should be noted
that the controller gains (i.e., Ks , and Fs ) can be designed using different
approaches depending on the design goals. In this thesis, the SPADE flow
is illustrated using the linear quadratic regulator (LQR), linear-quadratic-
integral (LQI), linear-quadratic-Gaussian (LQG), MPC, and MJLS controller
design approaches. Typically, the number of identified system scenarios is
low in number, and the idea is that switching between the system scenarios
at runtime guarantees stability and improved performance. For pipelined
parallelism, a design-space exploration (DSE) using the SPADE flow needs
to be performed by varying the design parameters to identify the best imple-
mentation choice (parameters p,n//

c , further explained in Section 4.6.1).

3. Runtime implementation: The system configurations for the implementa-
tion choice are stored in a look-up table (LUT) in platform memory for the
runtime implementation. Dynamic runtime reconfiguration may be needed
since there can be a switching behaviour between system configurations due
to image-workload variations.

1.7 Motivating case study: LKAS

This thesis uses the motivating case study of a LKAS. The bicycle model derived
from [68] (illustrated in Fig. 1.9) is considered for simulating the LKAS of a vehicle3

3The (default) vehicle parameters are those specified in [68] for Honda Accord.

Figure 1.9: LKAS dynamics model derived from [68].
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on a straight road and it is described as follows,

Ac (vx ) =


− c f +cr

mvx

−mv2
x+cr lr −c f l f

mvx
0 0

−l f c f +lr cr

Iψvx
− l 2

f c f +l 2
r cr

Iψvx
0 0

−1 −L 0 vx

0 −1 0 0

 ,

Bc =
[

c f

m
l f c f

Iψ
0 0

]>
,

Cc =
[

0 0 1 0
]

,

Dc = 0,

where, referring to Fig. 1.9, we define the state vector x(t ) = [vy ,ψ̇, yL ,εL], the mea-
sured output y(t ) as yL , and the control input u(t ) as the steering angle δ f , where
ψ̇ is the vehicle’s yaw rate in rad/s, where the velocity components vx and vy are
in m/s, where l f , lr (= 1.22 and 1.62 m respectively) denote distance of the front
and rear axles from the centre of gravity (COG), where Iψ (= 2920 kg·m2) is the to-
tal inertia of the vehicle around its COG, where c f , cr (= 1.2×105 N/rad) denote
cornering stiffness of the front and rear tires, and where the total mass of the ve-
hicle is m (= 1590 kg). Note that the model can be either linear time-invariant or
time-variant depending on whether longitudinal velocity vx is constant or time-
varying.

1.8 Thesis outline

This thesis is organized along the research challenges and scientific contributions
outlined in Section 1.5. Accordingly, the five scientific contributions are reported
in Chapter 2 to Chapter 6. Chapters 2, 3 and 4 focus on platform-aware design as-
pects where the research focus has been on reducing sampling period and delay
by parallel implementation (Chapter 2), pipelined implementation (Chapter 3) or
their combination (Chapter 4). Chapters 5 and 6 report design approaches exploit-
ing application-specific characteristics. Chapter 5 reports the proposed approach
on dealing with workload variation in a sequential IBC implementation. Chapter 6
presents the approximation-aware design of an IBC system. It presents the IMACS
framework for approximate computing in closed-loop systems. Chapter 7 makes
some concluding remarks and outlines a number of relevant future extensions.
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Image-based control (IBC) systems are increasingly being used in various domains
including autonomous driving. The key challenge in IBC is to deal with high com-
putation demand while guaranteeing performance and safety requirements such
as stability. While modern industrial heterogeneous platforms, such as NVIDIA
Drive, offer the necessary compute power, application development on these plat-
forms with performance and safety guarantees is still challenging. Alternative
time-predictable platforms are not yet in widespread use.

A typical design flow for IBC systems consists of three distinct elements: (i)
mapping tasks onto platform resources; (ii) timing analysis, consisting of task-
level worst-case execution time (WCET) analysis and application-level analysis to
obtain worst-case performance bounds on aspects such as latency and through-
put; (iii) controller design using the obtained performance bounds, ensuring per-
formance and safety. While such a three-step design process is modular in nature,
it usually leads to over-dimensioned systems with sub-optimal performance, be-
cause task- and/or application-level timing bounds are pessimistic.

We present a basic scenario- and platform-aware design flow for IBC systems
that exploits frequently occurring workload scenarios to optimize performance.
For industrial platforms, where tight task-level WCET bounds are difficult to ob-
tain, we moreover propose to use frequently occurring task execution times in-
stead of WCET estimates to obtain tight application-level temporal bounds. Dur-
ing controller design, we then optimize performance and guarantee stability by
identifying appropriate system scenarios and by designing a switched controller
that switches between those scenarios. We illustrate our method considering a
predictable multiprocessor system-on-chip platform - the composable and pre-
dictable multiprocessor system-on-chip (COMPSOC). We validate the proposed
method using hardware-in-the-loop (HIL) experiments with an industrial hetero-
geneous multiprocessor platform - NVIDIA Drive PX2 - considering a lane-keeping

The content of this chapter is an adaptation of the following two papers:
Sajid Mohamed, Dip Goswami, Vishak Nathan, Raghu Rajappa, and Twan Basten. A scenario-and
platform-aware design flow for image-based control systems. Microprocessors and Microsystems,
75:103037, 2020.
Sajid Mohamed, Diqing Zhu, Dip Goswami, and Twan Basten. Optimising quality-of-control for data-
intensive multiprocessor image-based control systems considering workload variations. In 21st Eu-
romicro Conference on Digital System Design (DSD), pages 320–327, 2018.
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assist system (LKAS). Both platforms and the LKAS case study were already intro-
duced in Chapter 1. We obtain an improved control performance compared to
state-of-the-art IBC design.

2.1 Background and contributions

IBC systems are a class of data-intensive feedback control systems whose feedback
is provided by image-based sensing using a camera. Data-intensive feedback con-
trol systems are common nowadays due to advancements in cyber-physical sys-
tems (CPSs) [135]. IBC systems have become popular with the advent of efficient
image processing algorithms and low-cost complementary metal–oxide semicon-
ductor (CMOS) cameras with high resolution [29]. The combination of the cam-
era and the image processing algorithm gives necessary information on param-
eters such as relative position, geometry, relative distance, depth perception and
tracking of the object-of-interest. Applications of IBC are found in robotics [29],
autonomous vehicles [40, 101], advanced driver assistance systems (ADAS) [16],
electron microscopes [44], visual navigation [25] and so on.

As illustrated in Fig. 2.1, a classical control implementation sequentially and
periodically executes the sensing task, control compute task and actuating task.
In an IBC system, the sensing task has a long, variable execution time, incurring
a long delay. Variability in execution time may occur due to variation in image-
processing workload and/or in the platform load caused by other applications.
The key challenge is to deal with this high dynamic computation demand while
guaranteeing performance and meeting safety requirements such as stability.

IBC applications are nowadays usually implemented on some heterogeneous
multiprocessor platform that may be shared with other applications. A typical de-
sign flow for IBC applications is composed of three distinct elements: (i) mapping
tasks onto platform resources, which may be done manually or (semi-)automati-
cally; (ii) timing analysis, consisting of task-level execution-time analysis and app-
lication-level analysis to obtain worst-case application-level latency and through-
put bounds; (iii) controller design ensuring performance and safety guarantees
taking into account task- and application-level temporal bounds. A typical flow
abstracts variable task execution times through WCET estimates. These are of-
ten overly conservative, because of image-dependent workload variations and/or

Figure 2.1: An IBC system: block diagram (repeating Fig. 1.4 (a), for readability)
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difficult to predict platform timing. This leads in turn to loose application-level
timing bounds which hampers controller design. The resulting IBC system has
sub-optimal control performance and is often over-dimensioned.

Fig. 2.2 illustrates a standard IBC implementation on a single processing core.
A camera captures image frames with a period fh , the inverse of which is referred
to as the frame rate. The frame rate determines the number of image frames that
arrive per time unit, e.g., frames per second (FPS). Typically, the camera frame
rate is much higher than the rate at which the frames can be processed on a single
core. Pessimistic task-level WCET estimates and application-level analysis result
in over-allocation of processing resources for the worst-case workload and idling
for non-worst-case workloads (to keep the sampling period constant). This leads
to a long sampling period h. In the example of Fig. 2.2, with one processing core,
we can only process every third image frame, resulting in sub-optimal control per-
formance.

In this chapter, we present the basic version of the model-based SPADE for
multiprocessor IBC systems, already outlined in Section 1.6, that exploits paral-
lelization of the sensing task and frequently occurring workload scenarios to opti-
mize performance. For industrial platforms, where tight task-level WCET bounds
are difficult to obtain, we moreover propose to use frequently occurring task exe-
cution times instead of WCET estimates to obtain tight, though possibly no longer
conservative, application-level temporal bounds for workload scenarios. For con-
troller design, we identify appropriate system scenarios [51] that take into account
platform mapping and controller performance for specific workload scenarios.
Each system scenario corresponds to a specific sampling period. IBC performance
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Figure 2.2: Illustration of classical IBC system implementation considering worst-case sce-
nario. S: sensing and image processing, C: control computation and A: actuation.
(Adapted from Fig. 1.4 (b) and (c), for readability.)
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is then optimized and stability is ensured by designing a switched controller that
switches at runtime between system scenarios. Scenario-aware dataflow (SADF)
[129] is used as a model of computation to capture parallelized (workload and sys-
tem) scenarios and for timing analysis.

Predictable platforms, such as COMPSOC [55] and PRET [38], provide pre-
dictable tight WCETs for individual tasks in an application. Further, the com-
posability property of such platforms ensures that other applications sharing the
platform do not interfere with the application under consideration. The WCET
variations of a task execution on predictable platforms is mainly due to the image
workload variations. These properties make predictable multiprocessor system-
on-chip (MPSOC) platforms suitable for model-based design. We develop and
illustrate our SPADE approach for the predictable and composable interference-
free COMPSOC platform.

We further apply our method on the industrial NVIDIA Drive PX2 platform. In-
dustrial heterogeneous platforms provide high compute power with support for
extensive parallelization that is typically needed for data-intensive applications.
However, such platforms are closed-source and use operating systems (OSs) that
result in high variations in execution times of application tasks mapped to the
platform. An ensuing challenge is that the application timing is difficult to pre-
dict. Derived task-level WCET estimates are overly pessimistic. Model-based ap-
proaches using these pessimistic WCETs lead to pessimistic application-level per-
formance bounds. This potentially compromises control performance and may
lead to resource over-provisioning. However, task execution time distributions
due to workload and platform-dependent variations can be statistically analysed
from observed data, e.g., as a PERT distribution [1] (illustrated in Fig. 2.2). Such a
distribution allows to classify the most frequently occurring task execution times.
Using those execution times give tighter, though possibly no longer conservative
application-level performance bounds. SPADE copes with possible timing ana-
lysis violations in the (switched) controller design. Using SPADE, we perform
model-based design-space exploration (DSE) for an industrial setup over resource
utilisation, quality of control and energy consumption to obtain Pareto-optimal
system configurations at design time. We consider the concrete case study of a
LKAS implemented on the NVIDIA Drive PX2 platform, sharing the platform with
two other data-intensive applications - object detection and tracking and auto-
matic emergency braking.

Contributions: In this chapter,

1. we present the basic SPADE flow for IBC system design considering parallel
implementation.

2. we compare SPADE with a state-of-the-art pipelined control approach
[112] through simulations for a predictable MPSOC platform - COMPSOC.
Pipelined control does not parallelize the sensing but uses multiple cores
to pipeline multiple sensing instances. We provide a guideline when the
SPADE approach is suitable with respect to the pipelined control approach.
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3. we adapt SPADE targeting an industrial platform - NVIDIA Drive PX2.
We show that we can leverage the principles of predictable model-based
(co-)design for industrial platforms by carefully co-designing the image-
processing implementation and the switched controller design, using a
system-scenario-based approach [51].

4. we validate the SPADE approach in an industrial setting using a HIL experi-
ment.

2.2 Embedded image-based control

We consider a setting for an IBC system as shown in Fig. 2.1. Our sensor is the
camera module that captures the image stream. The image stream is then fed to
an embedded multiprocessor platform at a fixed frame rate (FPS). The tasks in our
application - compute-intensive image sensing and processing (S), control com-
putation (C) and actuation (A) - are then mapped to run on this multiprocessor.

2.2.1 Linear time-invariant (LTI) feedback control systems

We consider an LTI feedback control system given by:

ẋ(t ) = Ac x(t )+Bc u(t ), (2.1)

y(t ) =Cc x(t ),

where x(t ) ∈Rn represents the state, y(t ) ∈R represents the output to be regulated
and u(t ) ∈ R represents the control input of the system at any time t ∈ R≥0. Ac ,
Bc and Cc represent the system, input and output matrices of appropriate dimen-
sions.

We illustrate our work using the motivating case study of a vision-based lateral
control system model explained in Section 1.7. The tasks in our LKAS - compute-
intensive image sensing and processing (S), control computation (C), and actua-
tion (A) - need to be mapped to run onto a multiprocessor platform. Quality-of-
control (QOC) needs to be optimized. The state-space matrices of our LKAS for
the vehicle speed of 15m/s are as follows,

Ac =



−10.06 −12.99 0 0 0

1.096 −11.27 0 0 0

−1.000 −15.00 0 15 0

0 −1.000 0 0 15

0 0 0 0 0

 , Bc =



75.47

50.14

0

0

0

 , Cc =
[

0 0 1 0 0
]

.

A fifth state is added for observability [68] of our controller compared to the equa-
tions in Section 1.7. The fifth state is the curvature of the road at the look-ahead
distance, and helps to observe the road curvature. The control input u(t ) is the
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front wheel steering angle δ f and the output y(t ) is the lateral deviation at the
look-ahead distance yL .

2.2.2 Embedded implementation

Implementation of an IBC system involves the execution of three sequential tasks:
sensing and processing (S), control computation (C ) and actuation (A). These tasks
repeat; let the start and finish times of the task instances be given by ts (.) and t f (.),

respectively. The execution times of Sk , C k and Ak (the k-th instance) are then
given by,

ek
T = t f (T k )− ts (T k ),

where T ∈ {S,C , A}. The interval between two consecutive executions of sensing
tasks Sk and Sk+1 is then the sampling period hk for the k-th instance. The time
interval between the starting time of Sk and finishing time of Ak is the sensor-to-
actuator delay τk for the k-th instance.

hk = ts (Sk+1)− ts (Sk ), τk = t f (Ak )− ts (Sk ).

We consider a time-triggered implementation of tasks S, C and A. A camera cap-
tures the images at discrete intervals, e.g., 30 fps, and the image frame arrival pe-
riod fh is given by,

fh = 1

frame rate
; for 30 fps, fh = 1

30
s = 33.33 ms.

This means that the sampling period h needs to be an integer multiple of fh . Sen-
sor processing is followed by control computation and actuation operations which
generally take a short and nearly constant time for execution. A sensing operation
takes much longer time, i.e.,

eS À eC +e A

where eS , eC and e A are the worst-case execution times of sensing and processing,
control computation and actuation, introduced above. Moreover, ts (C k ) = ts (Sk )+
eS and ts (Ak ) = ts (C k )+ eC . The total (worst-case) execution time of the control
loop is then given by etotal = eS +eC +e A .

The effective sensor-to-actuator delay τ and sampling period h are then given
by,

τ= etotal, h = detotal

fh
e fh .

We assume that the start of sensor data processing is aligned with the cam-
era frame arrival and the actuation is delayed to guarantee constant sensor-to-
actuator delay. With sensor-to-actuator delay τ and a zero-order-hold mecha-
nism with sampling period h ∈R, u(t ) becomes piecewise constant in the intervals
t ∈ [kh +τ, (k +1)h +τ] for k ∈Z≥0.
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Image-processing workloads may vary, e.g., depending on image content. In
Fig. 2.2, for example, the number of features in an image determines the work-
load. Each workload scenario si is annotated with a pair (hi ,τi ) that models the
sampling period and delay associated with it. A zero-order sample-and-hold ap-
proach can then be used to discretize the system based on the workload scenario
si . Eq. (2.1) can be reformulated as follows:

x[k +1] = Asi x[k]+B0,si u[k]+B1,si u[k −1],

y[k] =Cc x[k] (2.2)

where,

Asi = e Ac hi ,

B0,si =
∫ hi−τi

0
e Ac s d s ·Bc , B1,si =

∫ hi

hi−τi

e Ac s d s ·Bc (2.3)

In Eq. (2.2), we assume that u[−1] = 0 for k = 0. We define new system states

z[k] =
[

x[k] u[k −1]
]T

with z[0] =
[

x[0] 0
]T

to obtain a higher-order aug-

mented system as follows to obtain a delay-free state space:

z[k +1] = Aaug ,si z[k]+Baug ,si u[k], y[k] =Caug z[k] (2.4)

where,

Aaug ,si =
[

Asi B1,si

0 0

]
, Baug ,si =

[
B0,si

I

]
, Caug =

[
Cc 0

]
.

0 and I represent the zero and identity matrices of appropriate dimensions. A
check for controllability [37] is done for this augmented system. If the system is
not controllable, controllability decomposition is done to obtain a controllable
subsystem. We can apply standard control design techniques for the delay-free
state-space model shown in Eq. (2.4).

2.2.3 Control law and control configurations

In view of the augmented system of Eq. (2.4), we use a state feedback controller
u[k] of the following form,

u[k] = Ksi z[k]+Fsi rr e f

where Ksi is the state feedback gain and Fsi is the feedforward gain both designed
for the workload scenario si . rr e f is the reference value for the controller. The
design of gains can be done with state-of-the-art control design techniques such as
linear quadratic regulator (LQR) or pole-placement [37]. Note that any other state-
of-the-art control design technique can also be used for designing these gains.

For each workload scenario si , we then define a control configuration χc
si

as a
tuple χc

si
= (hi ,τi ,Ksi ,Fsi ).
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2.2.4 Controller stability

At runtime, the workload scenarios are switching based on the image workload
variations and/or platform load. This switching behaviour can lead to system in-
stability. Therefore, we must guarantee stability of the overall system while im-
proving QOC.

Theorem 2.2.1. (Stability criterion [125]) Consider Aaug ,si to be discrete-time LTI
systems. V (z) = zT P z is the common quadratic Lyapunov function ( CQLF) of the
systems Aaug ,si if there exist P = P T > 0, Q = QT > 0 and P is the simultaneous
solution of the discrete-time Lyapunov equations,

AT
aug ,si

PAaug ,si −P =−Q < 0. (2.5)

The existence of a CQLF is a sufficient condition for the stability of a system with
switching subsystems.

We transform the stability condition (Eq. (2.5)) into linear matrix inequalities
(LMIs) to analyse for the existence of a CQLF. The analysis equation, Eq. (2.6), is
obtained by performing the following operations: i) substitute Aaug ,si in Eq. (2.5)
with Aaug ,si = Aaug ,si +Baug ,si Ksi , ii) apply Schur complement, and iii) left- and
right- multiplication by diag(P−1, I ) and set Q = P−1.[

−Q Q AT∗ +QK T
si

BT∗
A∗Q +B∗Ksi Q −Q

]
< 0, Q > 0 (2.6)

where A∗ = Aaug ,si , B∗ = Baug ,si for each scenario si . If a solution exists, then the
switching subsystems are stable. The choice of scenarios need to be modifies if a
solution does not exist. A less aggressive mode with poorer performance is usually
more likely to meet the stability condition. Failure to guarantee switching stability
would result in a classical worst-case based design.

An alternate controller synthesis method is proposed for this setting using a
Markovian jump linear system (MJLS) formulation in Chapter 5.

2.2.5 Control performance: mean square error (MSE)

The mean square error (MSE) is the mean of the cumulative sum of the squared
errors, i.e.:

MSE = 1

n

n∑
k=1

(y[k]− rr e f )2

where n is the number of observations, y[k] is the value of the k th observation and
rr e f is the reference value. The MSE quantifies, in essence, how fast the output
y(t ) reaches the reference rr e f . A lower MSE implies a better QOC.
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2.3 Model-of-computation (MOC) for IBC

Our application is modelled using a MOC or a programming model that allows
timing analysis. Our model should capture dynamic behaviour and scenario-
awareness. This enables us to model and analyse execution time variations that
happen at runtime due to either image workload variations and/or platform load.
We assume that WCET estimates of task workloads are given for a platform or can
be computed.

A MOC is required to compute the parameters relevant for the control design -
the sampling period h and the sensor-to-actuator delay τ. However, the challenge
now is: How to accurately determine h and τ at design time for a multiproces-
sor, possibly heterogeneous, platform implementation? The choice of binding and
scheduling of tasks on the platform determines h and τ.

2.3.1 Scenario-aware dataflow (SADF)

We choose SADF [129] as the formal MOC for our application as it enables us to:
i) model dynamic behaviour, analyse timing, and optimally map application tasks
to the platform for maximising the effective utilisation of allocated resources, ii)
relate throughput of the dataflow graph to the sampling period, and thus combine
dataflow analysis and mapping with control design parameters and QOC, and iii)
to efficiently implement a runtime mechanism that manages necessary dynamic
reconfiguration between system scenarios.

Following the formalisation of [4], an SADF model is a tuple (Σ, F ), where

• Σ = {si | si = (wi ,Gi ), wi ∈ W } is a set of scenarios being a set of
pairs of workloads wi and their corresponding synchronous dataflow graphs
(SDFGs) Gi ;

• the (ω-)language F describes a set of infinite scenario sequences repre-
sented using ω-regular expressions of scenarios si ∈Σ.

Here, the workload refers to the image workload, i.e., the number of features
in the image that should be processed. For example, more features in an image
imply a higher workload. We assume that workloads are totally ordered, i.e., for
any two workloads wi and w j , either wi ≤ w j or w j ≤ wi . Ordering the workloads
helps to prune the state-space for system-scenario identification (explained later
in Section 2.5.3).

An SDFG [73] is a tuple G = (A , C , e, rp , rc , i ) where A is a finite set of actors,
C ⊆A 2 the set of channels, e : A →R≥0 returns for each actor its associated firing
delay. The firing delay models the time it takes to execute (fire) an actor. If an actor
models a computational task, the firing delay typically models the (worst-case)
execution or response time of that task. rp : C →N>0 is a function that returns for
each channel its production rate, rc : C →N>0 is a function that returns for each
channel its consumption rate, i : C → N0 returns for each channel its number
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of initial tokens. When actors of an SDFG fire, they consume and produce tokens
according to the specified consumption and production rates. They can only fire
if sufficient tokens are available on their input channels.

A repetition vector ρ of an SDFG G is a function ρ : A −→N0 such that for every
channel c = (am , an) ∈C , rp (c)×ρ(am) = rc (c)×ρ(an). A repetition vector ρ for an
SDFG G is called non-trivial iff for all am ∈A , ρ(am) > 0. An SDFG is called con-
sistent iff it has a non-trivial repetition vector. For a consistent SDFG, the unique
smallest non-trivial repetition vector is designated as the repetition vector ρ of the
SDFG. An SDFG iteration is a minimal non-empty set of actor firings that has no
net effect on the token distribution in the graph. For a consistent SDFG, for all
am ∈ A , the set contains ρ(am) firings of am . For the scope of this work, we as-
sume that the IBC application model, which is an SADF, can only have consistent
SDFGs and the SDFGs are deadlock-free. These assumptions can be checked effi-
ciently and are valid as any SDFG which is inconsistent or deadlocks is not useful
in practice.

The SADF model for our LKAS IBC application is illustrated in Fig. 2.3(a). The
sensing and processing algorithm receives the camera image frames and detects
the regions-of-interest (RoID) in the frames. In this case, the workload is related to
the number of regions-of-interest (ROIs). The detected ROIS can be processed in
parallel on a multiprocessor platform. The number of allocated processors for our
application determines the number of ROI processing (RoIP) actors in our model.
In this case, we have two allocated processors and hence two RoIP actors. The to-
tal number of ROI detected by RoID determines the workload wi , i.e., wi = y1+ y2.
The parameters y1 and y2 determine how many ROI need to be allocated to the in-

(a) 

X 

(b) 
• 

X 

------•---
--

Figure 2.3: LKAS dataflow model, assuming two allocated processors and hence two RoIP
actors: (a) application model; (b) (simplified) binding-aware SDFG.
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dividual processors and are the rates for the corresponding scenario si . Note that
the workloads here are totally ordered as they are related to the number of ROIS.
Rates are annotated with the channels, where rates of 1 are not shown explicitly.
The workloads translate to variable token production and consumption rates in
the scenario SDFGs. Note that the sensor-to-actuator delay and sampling period
vary based on the value of y1 and y2. After processing the ROI, the data is merged
and the controller state (the lateral deviation yL in our LKAS case study) is com-
puted by the ROI merging (RoIM) task. The control algorithm (C) then computes
the controller input u[k] (steering angle δ f in our LKAS case study) and feeds it to
the actuation (A) task.

Each workload wi in an SADF is associated with an SDFG Gi . An SDFG in-
stance of Fig. 2.3(a) is obtained by assigning values to parameters e j (the actor
execution times) and yk . E.g., assigning y1 = 2, y2 = 3, ed = 5, ep = 10, em =
7×(y1+y2) = 35, ec = 2, ea = 2 gives the SDFG for a workload of 5 ROIS for mapping
to two processors. The actors of Gi are Ai = {RoID,RoIP0,RoIP1,RoIM,C,A}. Fig.
2.3(b) illustrates an SDFG as it is derived from the model structure of Fig. 2.3(a).
(This is actually a binding-aware SDFG, as explained later.) The set of channels
of Gi , Ci , is shown as dependencies in the figure. Compared to the model of Fig.
2.3(a), the SDFG of Fig. 2.3(b) has two additional channels, self-loop channels for
the RoIP actors. There are three initial tokens, one on the channel from actor A to
RoID and two on the self-loop channels for the RoIP actors. The self-loop channels
and their initial tokens capture the fact that each of the RoIP actors is executed se-
quentially on its allocated processor. The workload scenarios are defined based
on wi and the parameters that change for the corresponding Gi are y1, y2, and
em = 7× (y1 + y2). All other aspects of the Gi are the same for all scenarios. There
is one (labelled) initial token x in the channel from actor A to RoID. For the SADF
model in Fig. 2.3, for each scenario wi , the corresponding SDFG Gi has repetition

vector ρi =
[

1 y1 y2 1 1 1
]

, where y1 and y2 represent the firing rates

of the two actors RoIP shown in Fig. 2.3. A word from the SADF language F now
specifies a sequence of iterations of the corresponding scenario SDFGs.

The state-of-the-art SADF analysis uses (max, +) algebra [9]. The definitions
needed for our analysis are summarised in the following paragraphs. For detailed
explanations and analysis methods, the reader is referred to [4].

A time-stamp vector γ0 captures the availability times of a subset of initial to-
kens, called the labelled initial tokens. The production times γ1 of the labelled
final tokens resulting from the execution of a scenario s are then captured by
Eq.( 2.7).

γ1 =G sγ0, (2.7)

where G s is the scenario (or state) matrix of s. We assume that the labelled initial
and final tokens are the same, and that the execution of a scenario corresponds to
one iteration of the corresponding SDFG. For the scenario SDFG corresponding to
5 RoI, introduced above in Fig. 2.3(b), the initial token on channel A-RoID labeled
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x is a labelled token and γ0 = [0]. G s =
[
ed +max(y1, y2)×ep +em +ec +ea

] = [74]
and γ1 = [74][0] = [74+0] = [74].

G s is used to determine the evolution of any scenario sequence. Labelled final
tokens of one scenario are the initial tokens of the next scenario execution. E.g., if
sω is the infinite repetition of scenario s, then the production times of the labelled
tokens after the execution of the k th scenario in the sequence are given by:

γk =G sγk−1 =Gk
s γ0 (2.8)

For all scenarios s ∈ Σ, we can construct G s ∈ Ri (s)×i (s)−∞ following the procedure
of [119]. Here, i (s) is the total number of labelled initial tokens (in all channels) for
scenario s and R−∞ =R∪ {−∞} is the domain of (max, +) algebra.

Further, we need to analyse the production times of outputs, i.e., the relevant
information produced, during the execution of a scenario sequence. Let the func-
tion m : Σ→ N ∪ {0} map each scenario to the number of outputs produced in
that scenario. The output production times of the scenario sequence sω can be
computed as,

pk = H sγk = H sGk
s γ0 (2.9)

where pk are the times at which the outputs in the (k +1)th iteration are pro-
duced and where H s ∈Rm(s)×i (s)−∞ is the output matrix of the scenario s that captures
the relation between the state vector and the production times of the m(s) outputs.
Note that the first output production times are given by p0. The H s matrices can
be computed in a similar way as the state matrices.

For the LKAS scenarios, the output is produced by the actor A, meaning that
the output production time is equal to the production time of the token on the
channel from A to RoID. This means that H s = [74] and the production time of the
first output p0 = [74][0] = [74].

We quantify the throughput ν of a given scenario sequence from the language
F of an SADF model by the average number of outputs produced per time unit
during the execution of that sequence. The throughput of an SADF for an infinite
scenario sequence s̄ is defined as follows.

ν(s̄) = lim
n→∞sup

∑n
i=1 m(s̄i )∥∥γn

∥∥ (2.10)

where s̄i refers to the i th symbol in sequence s̄ (a scenario), and
∥∥γn

∥∥ is equal
to the maximum entry in the vector γn . For the infinite execution of the 5 ROI
scenario SDFG, the throughput is 1

74 . We omit the details of the computation,
referring the reader to [4].

For the SADF models in our basic SPADE flow, we assume the following.

• Throughput is inversely monotonic for our SADF model for different work-
loads. This assumption can be relaxed if we do a brute-force exploration
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for system-scenario identification (explained later in Section 2.5.3). This as-
sumption is required as we do not have a DSE step in the basic SPADE flow.
The monotonicity is guaranteed by the following:

1. The set of actors A is the same for all scenarios, i.e. Ai =A j , where Ai

and A j are the sets of actors of Gi and G j respectively.

2. wi ≤ w j =⇒ 1
ν(Gi ) ≤ 1

ν(G j ) .

• The sensing task is not pipelined, i.e., the control is sequential. This is guar-
anteed by having a channel with only one initial token from the actuation
task to the start of the sensing task in our SADF model (as in the example).

Both these assumptions are relaxed in Chapter 4.

2.3.2 System mapping and mapping configurations

System mapping refers to the binding of the application (modelled as an SADF
model) to the given platform (modelled as a platform graph) allocation. Note that
for each workload scenario, we can have multiple binding options on the given
platform. The throughput of each of these binding options would be different.
We then need to find the maximum throughput for a workload scenario, given the
platform allocation. The concrete problem is then to find the optimal mapping
of a workload scenario to the platform that maximises throughput. Any design
flow that does optimal mapping of an application to a platform while maximising
throughput can be used. We use the SDF3 design flow [123] as it optimises the
resource usage, memory load and communication load for mapping, and embeds
state-of-the-art throughput analysis techniques.

Optimal mapping of each workload scenario si (modelled as an SDFG Gi ) to
a platform graph generates a binding-aware SDFG G b

i with the task execution
schedule encoded in it. The 5-RoI SDFG discussed earlier, and illustrated in Fig.
2.3(b), is in fact a (simplified) binding-aware graph. It captures the binding and
scheduling of the actors on two processors. A mapping configuration refers to the
binding of a workload scenario on the platform and its execution schedule repre-
sented as a binding-aware SDFG.

2.4 Design problem

We can now make our design problem precise. For a given application and a plat-
form allocation, design

1. mapping configurations,

2. controller configurations, and

3. a runtime reconfiguration mechanism,



2

36 SPADE by parallelisation

����������	


���
����

��������


���
�

��	�����
�


�
���	

����	�


�	������

���
�


����������	�
��������
 ���
��������


����������	

�����	�


��	���������	�

����
�


�����	�

��	�����
�


��	���������	�

 
��	���������	


�
���	���

�	����!


����


"�����


���
���	�

�	������


�	�


�
���	

����
�
	�����	

�������


����
�


��
	����


��
	���������	

#�$
%��������	

Figure 2.4: Overview of the steps in the basic version of the SPADE flow for parallel imple-
mentation (adapted from Fig. 1.8, for readability). In a parallel non-pipelined
implementation, the sampling period is not constant and can vary at runtime,
as opposed to the proposed SPADE flow for pipelined parallelism outlined in
Fig. 1.8.

such that we optimise

• QOC and

• resource utilisation.

2.5 Scenario- and platform-aware design (SPADE)

The basic SPADE flow comprises the following steps as shown in Fig. 2.4 (adapted
from Fig.1.8):

1. identify, model and characterise the frequently occurring workload scenar-
ios that characterise the dynamic behaviour of the image processing in the
control loop;

2. find optimal mappings for these scenarios for the given platform allocation;

3. identify optimal system scenarios combining workload and mapping infor-
mation and taking into account constraints from the control domain, e.g.
stability, and from the embedded domain, e.g. camera frame rate;
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4. design a controller with high overall QOC and guaranteed stability for the
chosen system scenarios; and

5. a runtime reconfiguration mechanism for implementation.

As already stated, we illustrate the SPADE flow considering the predictability and
composibility properties of the COMPSOC platform. In the following, we detail the
steps in the SPADE flow.

2.5.1 SPADE inputs

The inputs to our design flow are details of the IBC application, other applications
sharing the platform, given platform allocation for the IBC application and camera
characteristics, e.g. FPS. These should be compliant with the application and plat-
form models. Note that the details of the other applications sharing the platform
are not relevant for a composable platform such as COMPSOC.

2.5.2 Formal modelling: application and platform models

A typical IBC application model of an LKAS is shown in Fig. 2.3(a). The details of
this model have already been explained in Section 2.3. Task-level WCET profiling
is required to compute the WCETs on the COMPSOC platform. The platform is
modelled as a platform graph as described in Section 1.3.1.

2.5.3 Analysis and design

System mapping

We first describe the system mapping, i.e., binding and scheduling, of our IBC
application model to the platform. Fig. 2.5 illustrates three workload scenarios
and their possible platform mapping.1 Fig. 2.5(a), (c), and (e) model the dataflow
graphs for different workloads (note the absence of self-loops for the RoIP actors)
and Fig. 2.5(b), (d) and (f) show their corresponding mappings and execution on
two or three processor tiles Pi . Having more processor tiles means that we can
reduce h and τ by parallel execution of the sensing tasks.

System mapping refers to the mapping of application tasks (modelled as an
SADF model) to the platform. An application can have multiple mapping options
for a given platform allocation. For example, in Fig. 2.5(c) and (e), the given plat-
form allocation is two and three processor tiles respectively (visible in the number
of RoIP actors) for the same workload (5 ROI).

1The indices for the RoIP actors are omitted for readability. The functionality of the different RoIP
actors is the same.
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Timing analysis: relation between dataflow analysis and control design

The inverse throughput of the mapped binding-aware SDFG G b
i for scenario se-

quence sωi gives the sensor-to-actuator delay τi ; the sampling period hi can be
derived from the sensor-to-actuator delay and expressed in terms of the frame ar-
rival period fh , i.e.,

τi = 1

ν(sωi )
, hi = d τi

fh
e fh .

The timing parameters for the three mapped workload scenarios in Fig. 2.5 are
obtained as follows:

τi = ed + (
navl

c
max

i
yi )×ep +em +ec +ea , hi = d τi

fh
e fh ,

where navl
c represents the total number of available (or allocated) processors. As-

sume fh = 1
30 s for a camera with 30 fps and em = 7× (

navl
c∑
i

yi ). Cost of communicat-

ing data between processors is assumed to be part of the actor execution times ei ;
if meaningful, such cost could be made explicit, but for simplicity, we do not do so.
For our example shown in Fig. 2.5:

τ1 = 5+1×10+7× (1+1)+2+2 = 33ms,

τ2 = 5+3×10+7× (2+3)+2+2 = 74ms,

τ3 = 5+2×10+7× (2+1+2)+2+2 = 64ms,

1
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Figure 2.5: Illustration of workload variations and platform mapping.
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and h1 = fh , h2 = 3 fh , h3 = 2 fh .

Control design

Once we obtain τi and hi for mapped workload scenario si , they are then used
for the discrete-time controller implementation as described in Section 2.2 and
for designing the controller gains. Further, the timing parameters are a part of
the control configuration as defined in Section 2.2.3. Any state-of-the-art control
design method can be used for this design.

Optimal system-scenario identification

It is possible for multiple workload scenarios to have the same sampling period
due to implementation constraints like platform allocation and camera frame rate.
For example, for the workload scenario represented in Fig 2.5 (a) with (h1,τ1), the
number of ROI, #ROI = 2. However, even for the workload scenario with #ROI = 1
mapped to two processors, we would have the same timing parameters (h1,τ1)
since the tasks would have to execute sequentially on one processor. Similarly, for
the workload scenario in Fig 2.5 (c), we would have the same timing parameters
for #ROI 5 and 6.

A system scenario ss abstracts multiple workload scenarios si such that for
hs = n × fh for some n > 0, (hs − fh) < hi ≤ hs and τi ≤ τs . Only system scenarios
are then considered for defining the control configuration and for platform imple-
mentation.

The system scenarios we consider for this case are {s1 = ( fh ,33), s2 =
(2 fh ,57), s3 = swc = (3 fh ,74)} ms. The worst-case system scenario swc is the sce-
nario corresponding to the worst-case image workload (which in our case is 6
ROIS). The other two scenarios correspond to workloads of 1 or 2 resp. 3 or 4 ROIS.
The workload with 5 ROIS is part of the worst-case system scenario.

Once we identify the timing parameters for our system scenarios, we design the
controller and compute (Kss , Fss ) for each system scenario ss . Then, the controller
stability needs to be guaranteed for the system scenario switching (as explained in
Section 2.2.4). If the controller stability is guaranteed, then we can proceed with
the implementation. Otherwise, we need to choose a different (sub)set of system
scenarios for which the system scenario switching is stable. For the scope of this
chapter, this is done by a brute-force approach. In case we cannot identify any sta-
ble switching (sub)set of system scenarios, we revert to the design with the worst-
case scenario swc as the single system scenario.

2.5.4 Implementation and runtime reconfiguration mechanism

The optimal system scenarios are identified and their corresponding control and
mapping configurations are stored as a look-up table (LUT) in platform mem-
ory for runtime implementation. During runtime, for every arriving input im-
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age frame, we compute the workload (e.g. through an image pre-processing step)
and choose the correct system scenario associated with this workload from the
LUT. Controller and mapping configurations of the corresponding system sce-
nario are loaded from the LUT. A scheduler then reconfigures the mapping, the
time-triggering of the actuation task and the controller gain parameters based on
the chosen system scenario. The overhead cost for this reconfiguration has already
been considered in our analysis model as a time cost in the start of sensing task
(e.g. along with the actor RoID in Fig. 2.3).

2.6 Simulation results

In this section, we analyse the performance of our basic SPADE flow through sim-
ulations. We first analyse the impact of workload variations and then compare our
approach to a state-of-the-art pipelined control implementation.

2.6.1 Impact of workload variations

The QOC provided by an IBC system depends on the nature of workload varia-
tion encountered by the application resulting in different switching sequences. We
simulate the LKAS controller performance for various system scenario switching
sequences with 2, 4, and 5 ROIS and sampling periods h1 = 0.033s, h2 = 0.066s,
and hwc = 0.100s for the corresponding system scenarios s1, s2, and swc , respec-
tively, as shown in Fig. 2.6. We assume that there are 6 ROIS in the worst-case.
We observe that our switching designs of SPADE (plot (s1s2swc )ω and (s2s2swc )ω)
have better QOC (low MSE) than the worst-case sampling period based design (see
plot (swc )ω) in Fig. 2.6. An example switching sequence is illustrated in Fig. 2.7(a).
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Figure 2.6: Controller performance: comparison of switching subsystems with worst-case
swc
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We see that the effective resource utilisation for each sampling period is improved
(with less idling) with respect to the worst-case based design in Fig. 2.7(b).

2.6.2 Comparison with state-of-the-art pipelined control

We compare our SPADE approach with a state-of-the-art pipelined control ap-
proach [112]. For fairness in the comparison, we use the same control design tech-
nique - LQR with integral action - explained in [112] for SPADE. Further, we con-
sider the same given platform allocation of two processors.

Pipelined control design: We discretize the continuous-time system model in
Eq. (2.1) with sensor-to-actuator delay τ and sampling period h to obtain a de-
layed input system,

x((k +1)h) = Ad x(kh)+Bd u(kh −h), (2.11)

where Ad , Bd are the discretized state and input matrices respectively. Here,

Ad = e Ac h and Bd = ∫ h
0 e Ac s Bc d s. The control input u(t ) applied at t = kh uses

h time units old sensing information in any sampling interval kh to (k+1)h due to
the sensor-to-actuator delay τ. This is reflected in Eq. (2.11) as the delayed input
u(kh −h).

For brevity, the pipelined control delay and period is represented as τ and h in
this subsection. τ= d etotal

fh
e fh and h = τ

γ , where γ is the number of processing cores.
Note that in [112], there is a strict criterion that the sampling period should be an
integral multiple of fh and strictly periodic. As such the τ should be relaxed based
on γ. E.g., in our LKAS case, if etotal = 0.084s, we get τ= 0.100s and h = 0.050s for
γ= 2. However, h = 0.050s is not an integral multiple of fh and as such we have to
relax τ so that τ = 0.100+ fh = 0.133s and h = 0.067s which is an integral multiple
of fh .
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Figure 2.7: Gantt charts for (a) switching sequence (s1s2swc )ω, (b) corresponding worst-
case design (swc )ω, and (c) pipelined control design used for comparison.
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For designing the delayed control input u(kh−h), one design option is to trans-
form the system in Eq. (2.11) into standard non-delayed form and apply any stan-
dard control design technique. Towards this, we define a new system state vector

ẑ(kh) =
[

xT (kh) u(kh −h)
]T

to obtain a higher-order augmented system in

the non-delayed form as follows:

ẑ(kh +h) =Φd ẑ(kh)+Γd u(kh) (2.12)

y(kh) =Cd ẑ(kh),

whereΦd , Γd , Cd are the augmented discretized matrices such that,

Φd =

 Ad Bd 0

0 0 I

0 0 0

 , Γd =

 0

0

1

 .

0 and I represent the zero and identity matrices of appropriate dimensions. A
check for controllability [37] is done for this augmented system. If the system is not
controllable, controllability decomposition is done to obtain a controllable sub-
system.

The system in Eq. (2.12) is in standard discrete-time form for which a stan-
dard discrete-time control design technique such as LQR [37] can be used. We
use an LQR-based optimal state feedback controller, with integral action for ref-
erence tracking, referred to in literature as linear-quadratic-integral (LQI) con-
trol [142, 144]. The state feedback controller is of the form,

u(kh) = K

[
ẑ(kh)

xi (kh)

]
, where xi (kh +h) = xi (kh)+ y(kh)− r (kh). (2.13)

K is the LQR state feedback gain designed for the state space considering the inte-
gral action as given below,[

ẑ(kh +h)

xi (kh +h)

]
=

[
Φd 0

Cd 1

][
ẑ(kh)

xi (kh)

]
+

[
Γd

0

]
u(kh). (2.14)

This control design replaces the earlier presented LQR control design for each sce-
nario in SPADE. We do so to have a fair comparison between different implemen-
tation strategies since the control theory for pipelined control systems considers
that τ and h are integral multiples of fh . However, the controller design approach
of SPADE can have any value for τ and hence is more flexible than pipelined con-
trol. We adapt the pipelined control design applicable for τ ≥ h to the SPADE

approach applicable for any τ < h by modifying Eq. (2.14) with parameters from
Eq. (2.4):[

ẑ(kh +h)

xi (kh +h)

]
=

[
Aaug ,ss 0

Caug 1

][
ẑ(kh)

xi (kh)

]
+

[
Baug ,ss

0

]
u(kh).
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Figure 2.8: Comparison between pipelined and SPADE approach

Then, we design the gain Kss for each SPADE scenario ss using Eq. (2.13).

Comparison: For pipelined control, the total sensor-to-actuator delay etotal =
5+ 6× 10+ 6× 7+ 2+ 2 = 111ms (since each pipe executes sequentially), the ef-
fective sensor-to-actuator delay = τ = d etotal

fh
e fh = 133.33ms, and the sampling pe-

riod h = τ
2 = 66.67ms for the given two processing cores. The Gantt chart of the

pipelined execution is shown in Fig. 2.7(c). As mentioned, for SPADE, we use the
same pipelined control design approach. For scenario swc , etotal = 5+3×10+6×
7+2+2 = 81ms so that τswc = 0.100 = hwc . Similarly, for scenario s1, τ1 = 0.033 = h1

and for scenario s2, τ2 = 0.067 = h2.
The results of the comparison between the pipelined controller with respect to

the SPADE approach are shown in Fig. 2.8. Note that SPADE allows for paralleli-
sation that reduces both sampling period and sensor-to-actuator delay. However,
pipelining only reduces the sampling period.

The key observations are:

• The performance of the LQI controllers highly depends on the quality of
controller tuning [112]. We observe that the QOC of the pipelined controller
is always in the range of QOC between the worst-case design and the SPADE

approach. Fig. 2.8 shows two different tunings of the pipelined controller:
plot pipelinedbc is tuned with the same control parameters as scenario s1

and pipelinedwc is tuned with the same control parameters as scenario swc .

If we execute in a frequently occurring scenario, e.g., s1 (see plot (s10
1 swc )ω

in Fig. 2.8), then we see that the control performance is better than the
pipelined control. In this particular case, arbitrary switching between s1, s2,
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Table 2.1: SPADE vs pipelined: applicability criteria and comparison

Criteria SPADE Pipelining [112]

Algorithm should be white/gray box white/gray/black box

Degree of parallelisation should be high for better QOC independent (no parallelism)

Inter-frame dependencies independent (no pipelining) should not exist

Workload variations considered in design not considered

Platform independent (applicable for all) suitable mainly for homogeneous

Restrictions on h any multiple of fh multiple of fh ; strictly periodic

Restrictions on τ none multiple of h and (γ× fh )

and swc is unstable. To meaningfully apply the SPADE approach, we should
have a frequently occurring scenario during run time, and switching from
this frequently occurring scenario to the worst-case should be stable, e.g.,
based on a dwell time criterion [125] (as shown for plots (s10

1 swc )ω and
(s10

2 swc )ω in Fig. 2.8).

• SPADE performs better with a shorter τ when τ < h and other control tun-
ing parameters are kept the same. When τ1 < τ2 < h, the case with τ1 will
have better performance than τ2 for the same h. The actual performance
improvement further depends on the system dynamics.

SPADE gives prominent advantages when the algorithm structure is known,
i.e., the application is a white/gray box and when there is scope for parallelisation.
Pipelining works also when the application is a black box and is not dependent
on the parallelisation of the algorithm. However, pipelining cannot be used when
there are inter-frame dependencies for the algorithm, whereas SPADE is not af-
fected by inter-frame dependencies (as further elaborated in the next two chap-
ters). Further, SPADE gives better results when the application is executing in its
frequently occurring scenario. Pipelining is better suited if the application is fre-
quently executing closer to its worst case. A brief comparison between SPADE and
pipelined approaches is illustrated in Table 2.1. In the following two chapters, we
integrate pipelining in SPADE, effectively combining the advantages of the two
approaches.

2.7 SPADE for an industrial platform

2.7.1 Case study: multi-camera LKAS sharing the platform with
other applications

We consider a concrete case study of a multi-camera LKAS. The goal of the LKAS is
to steer the vehicle autonomously to follow the center line of a lane. Multiple cam-
eras are used since the field-of-view of a single camera is not sufficient to detect
the lanes when the vehicle has to make sharp turns, e.g., at a T-junction. Fig. 2.9(c)
and (d) show the two different scenarios in the LKAS system. The first scenario s1
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Figure 2.9: (a) IBC system block diagram and the HIL simulator. (b) a snapshot of the HIL
simulation environment in webots. (c) LKAS using single camera. (d) multi-
camera LKAS; c1, c2, c3 are the cameras.

(see Fig. 2.9(c) occurs when the vehicle is navigating on a road with no sharp turns.
In scenario s1, only one camera c1 needs to be active. The second scenario s2 (see
Fig. 2.9(d) happens when the vehicle needs to take a sharp turn. In this case, all
three cameras c1, c2 and c3 need to be active. During runtime the scenarios are
detected based on the following: i) when there is a lane detected by camera c1 and
there is no request to make a turn, the LKAS executes in scenario s1; ii) when there
is no lane detected by camera c1 or there is a request to make a turn, the LKAS
executes in scenario s2. Our multi-camera LKAS is sharing the NVIDIA Drive PX2
platform with two other data-intensive applications - object detection and track-
ing (ODT) and automatic emergency braking (AEB).

2.7.2 SPADE input: IBC application

Image sensing and processing (S)

The main stages in the compute-intensive image sensing and processing of an au-
tomotive IBC system are the image-signal processing (ISP) pipeline, environment
perception and application-specific rendering (if required) (shown in Fig. 2.10(a)).
The ISP pipeline is generic for all IBC applications. Environment perception in-
volves application-specific preprocessing, feature extraction and inference. Ren-
dering refers to the display of relevant information on the dashboard or screen of
the vehicle and is application-specific. Below, we explain these stages in detail for
our LKAS system case study.



2

46 SPADE by parallelisation

Image-signal processing (ISP) pipeline The NVIDIA Drive PX2 comes with a Tegra
configurable ISP hardware and supports different image types - CUDA, OpenGL,
NvMedia - and different pixel formats - RAW, grayscale, RGB, Red Clear Clear Blue
(RCCB), RGB alpha (RGBA), YUV. NvMedia is an NVIDIA proprietary framework
which uses dedicated hardware blocks on the Tegra system-on-chips (SOCs) for
faster image processing. Algorithmic analysis of a closed-source proprietary ISP
pipeline is not possible. The stages common to generic ISP pipelines are explained
in [21]. For our LKAS, the gigabit multimedia serial link (GMSL) camera [97] cap-
tures the image frame at a fixed frame rate, 30 fps. Each frame then goes through
the closed-source ISP pipeline to obtain an image in ¿NvMedia, YUVÀ format.

Perception The perception stage performs a set of application-specific prepro-
cessing, feature extraction and control state computation steps on the image ob-
tained from the ISP.

The preprocessing step in LKAS (shown in Fig. 2.10(a)) involves converting
the image in ¿NvMedia, YUVÀ format to the ¿CUDA, RGBAÀ and ¿OpenGL,
RGBAÀ image type and pixel formats. Closed-source functions ‘image streamer’
and ‘format conversion’ from NVIDIA perform the image type conversions and
pixel format conversions, respectively. The ¿CUDA, RGBAÀ format is used for
applications that use graphical processing units (GPUs) and ¿OpenGL, RGBAÀ
for rendering.

The features to extract are application-specific. The LKAS extracts the lanes
from the image using the NVIDIA proprietary (pre-trained) high-precision deep
neural network (DNN) Lanenet [137] that enables pixel-level lane detection.
Lanenet executes on the GPU and its input is a ¿CUDA, RGBAÀ image. The out-
put of Lanenet is the position values of all the lane containing pixels, i.e., a set of
polyline values in the pixel domain.

Finally, the lateral deviation of the vehicle from the center of the lane is derived.
A homography transformation matrix [56] is computed at design time. This matrix
is stored in the platform memory and is used at runtime to compute the position
values of the detected polylines from Lanenet. The left and right lane polylines
are then fit to a second degree polynomial. For a given look-ahead distance, the
center of the lane is derived using these polynomials while the center of the image
gives the vehicle‘s current position. Using these, the lateral deviation is calculated
at the look-ahead distance. The homography transformation at runtime needs to
be done only for the identified lane pixels.

Rendering For LKAS, the rendered image consists of the pre-processed image cap-
tured by the camera in ¿OpenGL, RGBAÀ format superimposed with the poly-
lines detected by Lanenet. The rendering step is not important for the correct
functioning of LKAS. Rendering is used for debugging and often provided as an
add-on for automotive customers for visual pleasure.
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Figure 2.10: (a) The block diagram of image sensing and processing task S. (b) Path planning
for scenario s2.

Control computation (C ) and actuation (A) tasks

The default scenario s1 persists when there is always a lane detected in the image
captured by the camera c1 and when there is no request to take a turn, e.g., at a
junction. For this scenario, the LKAS controller explained in Section 2.2 is used.
scenario s2 occurs when there is no lane detected by camera c1 or when there is a
request to take a sharp turn. Here the control computation is a standard path plan-
ning algorithm. The direction of the turn is user input or determined arbitrarily if
lanes are detected on both c2 and c3. If no lanes are detected in any of the cam-
eras, AEB is activated. Actuation task A actuates the vehicle steering to the desired
value communicated to it by the control computation task.

2.7.3 Formal modelling

The application is modelled as a dataflow graph (see Fig. 2.11 and Section 2.3).
The applications sharing the platform act as load and the platform is modelled as
a platform graph (see Fig. 1.6) using the available information [97] (see Section 2.2).

The LKAS has two application scenarios. The init actor models platform ini-
tialisation. The Sc1 , Sc2 and Sc3 actors model the image sensing and processing
tasks for cameras c1, c2 and c3. Each sensing task has the internal structure shown
in Fig. 2.10(a). Cs1 and Cs2 model the control computations for scenarios s1 and
s2. The actuation task is modelled by actor A. The scenario detector actor SD de-
termines which scenario the application runs in. ei , eSc1

, esd , eCs1
, eSc2

, eSc3
, eCs2

and ea are the execution times of the corresponding actors.
Note that the workload for this case is defined by the combination of applica-

tion scenarios, non-predictable timing behaviour of the closed-source industrial
platform and the platform load. Each platform load condition is abstracted as a
variant (see Table 2.2) for a systematic analysis. The parameters that change based
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Figure 2.11: Multi-camera LKAS SADF model.

on the workload are x, y shown in Fig. 2.11 (due to the application scenarios) and
the execution times of all actors (due to the platform load).

2.7.4 Analysis and design

System mapping and mapping configurations

The tasks/actors need to be mapped to the Tegra SOC resources - central process-
ing unit (CPU), integrated Pascal GPU (IGPU), discrete GPU (DGPU) and memory,
where CPU refers to the A57 and denver2 cores. Note that there are two Tegra SOCs
in the NVIDIA Drive PX2 platform. The options available for the developer when
mapping to the PX2 platform are limited. Priorities for tasks can only be assigned
on CPU resources. The tasks mapped to the GPUs are executed by the proprietary
NVIDIA scheduler and the execution times for such tasks vary the most due to the
(unpredictable) scheduler [140].

The mapping configuration does not include the schedule of tasks mapped to
GPUs as it is not controllable. Note that init, the homography computation step
of S, SD , C and A are always mapped to CPUs and the other steps of S are always
mapped to GPUs. The GPUs can only be accessed through the CPUs in the same
SOC by a blocking call.

Profiling and timing analysis

Platform-aware profiling is a crucial step in this instance of the SPADE flow. Since
there are closed-source functions in the application and a non-real-time Ubuntu
OS, the WCETs of tasks in the application are difficult to predict. The WCET of
tasks depends on three factors: scenario of the IBC application, choice of map-
ping, and the load on the platform due to the shared applications. For our case
study, we consider two other applications - ODT and AEB - sharing the platform.
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Table 2.2: Characteristics of variants based on mapping choice and load conditions

variants v.1 v.2 v.3 v.4 v.5 v.6 v.7 v.8 v.9 v.10

mapping DGPU IGPU DGPU IGPU DGPU IGPU DGPU IGPU DGPU IGPU

load - - AEB AEB ODT ODT
AEB,

ODT

AEB,

ODT
ODTs ODTs

ODTs: Object detection and tracking with task sharing between
GPUs

Both applications take camera images as input.
We define variants v .i to characterise and abstract multiple workload scenar-

ios for a structured profiling and timing analysis. The definition of variants is not a
necessity for the basic version of the SPADE flow. However, it helps to classify the
expected runtime scenarios and perform profiling and timing analysis in a struc-
tured way for the designer. The variants we consider based on our mapping choice
and platform load are defined in Table 2.2. The mapping is characterised based
on mapping the LKAS application to the IGPU or the DGPU, as preliminary ex-
periments show that compute-intensive imaging tasks perform better on GPUs.
Tasks mapped to CPUs take less than 5% of the overall WCET and are not explic-
itly considered. The platform loads AEB and ODT denote the mapping of these
applications to the same GPU as the LKAS. The platform load ODTs denotes the
mapping of ODT and LKAS to multiple GPUs (of the same type) so that there is
task sharing between GPUs. This can be done in the NVIDIA platform by assigning
just the type of GPU for the applications; then the proprietary scheduler allocates
tasks between multiple GPUs. This can be observed by analysing the GPU utilisa-
tion (explained in Section 2.7.7).

Note that due to the closed-source GPU scheduler of NVIDIA, the workload
due to the application scenarios and the platform load conditions at runtime can-
not be distinguished. Thus, the abstraction as variants is a means to enable the
optimal system-scenario identification and runtime reconfiguration (explained in
Section 2.7.5).

For profiling, a database of around 200 images (captured by the GMSL cam-
era) is identified with varying image workload. Considering image workload varia-
tions is important since they affect the WCET analysis. The image for the minimal
workload has no lane markings and no other vehicles on the road; for the maximal
workload, it contains three lane markings and other vehicles. For each variant,
each image from the database is run on the PX2 for 10000 iterations.

The worst-case sensor-to-actuator delay τwc and sampling period hwc are
computed as explained in Section 2.5.3. The execution times of each task are pro-
filed over all the variants and the maximum value is taken as the estimated WCET
of the corresponding task. This WCET estimate is used in the application SADF
model. τwc and hwc are then computed. Note that though this worst-case rarely
happens, it is needed to guarantee stability of the IBC system. Similarly, for each
variant v .i , the third quartile values of the measured execution times of each task
(profiled for the corresponding variant) is used to compute τi and hi . We thus
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avoid the measured WCETs for the majority of the analyzed workload scenarios to
avoid overly pessimistic model predictions.

Controller design

The controller for scenario s1 is designed as explained in Section 2.2. The stan-
dard linear quadratic regulator control is used to design the state feedback gain
Ki and the feed forward gain Fi for each variant vi . The control configuration χc

si

is then defined as a tuple χc
si
= (τi ,hi ,Ki ,Fi ). For each version, only χc

si
needs to

be stored in the memory during implementation. The stability of this switched
system is analysed by deriving LMIS that check for the existence of a CQLF (see
Section 2.2.4).

For scenario s2, the path planning algorithm identifies two waypoints once the
direction to turn is determined (illustrated in Fig. 2.10(b) for a 90 degree turn).
Waypoint 1 is the centre of the lane from where the vehicle has to start turning and
Waypoint 2 is the centre of the lane after the turn, from where we expect scenario s1

(see Fig. 2.10(b)). This can be predicted based on the turning radius RL . The steer-

ing angle δ f = at an
(

Lwb
RL

)
, where Lwb is the wheelbase of the vehicle. This steering

angle is constantly applied from Waypoint 1 until the vehicle reaches Waypoint 2
and then task S repeats. Only Lwb needs to be stored in memory for scenario s2.

2.7.5 System-scenario identification, implementation and run-
time reconfiguration mechanism

The variants defined in this section classify the expected runtime scenarios (as
explained in Table 2.2). The variants are useful in the profiling and timing ana-
lysis step in the basic SPADE flow. A system scenario abstracts multiple variants
with the same sampling period and optimal system scenarios are identified as ex-
plained in Section 2.5.3. During runtime, we keep track of the start and finishing
time of S, i.e., the sensing delay, to check for which system scenario we need to
execute from the LUT. The control and mapping configurations of the variants
and their relation to system scenarios are stored as a LUT in platform memory for
runtime implementation. After identifying the system scenario, we load the cor-
responding control configuration χc

si
and execute C . The mapping configuration

is then loaded for the subsequent arriving frame. Note that even though control
configurations are loaded every frame, mapping configurations cannot be loaded
until after the system scenario identification is completed and as such there is a
delay in loading mapping configuration by one frame. The classification as vari-
ants is thus essential in the identification of the system scenario at runtime as the
scenario identification at runtime is dependent on the current mapping as well.
An LQR controller designed for the worst-case (τwc ,hwc ) and its corresponding
control configuration χc

sw c is also stored in the memory as the worst-case system
scenario. At runtime, system scenarios are switching (as explained in Section 2.7.4)
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based on the load and/or mapping choices.

2.7.6 Design-space exploration at design time: QOC vs utilisation
trade-offs

The QOC is defined as the inverse MSE (defined in Section 2.2.5) so that a lower
MSE means a better QOC. The utilisation at design time is defined based on the
estimated time spent by the application in GPU kernel calls. We use this defini-
tion for the utilisation metric as this could be computed in an actual implemen-
tation as well. A DSE to obtain different system configurations is performed for
each of the variants defined in Table 2.2 by choosing different mapping options
for S, C and A tasks. Note that the task mappings are allowed to span over two
Tegra SOCs and the subtasks of S (shown in Fig. 2.10(a)) can also be mapped to
separate GPUs. Pareto-optimal system configurations are then identified for each
variant through Pareto optimisation. For each variant, DSE, profiling and timing
analysis provide different configurations with variable task execution times. This
results in variable delay for each variant and hence multiple system configurations
with variable sampling period due to the characteristics of the industrial platform.
As a basis for system-scenario identification, we select the Pareto-optimal system
configurations for each variant with delay and sampling period derived from the
configuration with frequently occurring task execution times.

The τi and hi from these Pareto-optimal configurations for each variant are
shown in Table 2.3. The v .i in Fig. 2.12 correspond to the predicted QOC vs. util-
isation design points using our design flow. In Fig. 2.12, the MSE for v .8 with
the largest τi among different variants is the poorest. The MSE for different vari-
ants tends to aggregate based on the hi . System scenarios can then be identified
based on the requirements, e.g. if QOC is the only criterion, we can select variants
v .1, v .7, and the worst case as system scenarios.

The pessimistic τwc and hwc are estimated as explained in Section 2.5.3 to be
0.150 s and 5/30 s respectively. Note that h7 is only 2/30 s and the identified worst-
case variant v .8 has h8 = 0.100 s. This means that a control design for hwc would
see a much worse MSE than any of the variants.

2.7.7 Hardware-in-the-loop validation using NVIDIA Drive PX2

A design-time analysis alone is insufficient as the runtime behaviour of an indus-
trial platform cannot be predicted. We implement the 10 different variants men-
tioned in Table 2.2 using a HIL simulator for LKAS (shown in Fig. 2.9) and compare
its performance with the design-time analysis. Our HIL simulator uses webots [84]
as the physics simulation engine and interacts with NVIDIA Drive PX2 using the
transmission control protocol/internet protocol (TCP/IP). This setup uses webots
for multi-camera LKAS with support for turning at a junction (or at user input).
This setup is part of the performance evaluation for IMAge-based Control Systems
(IMACS) framework (a contribution of this thesis).
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Table 2.3: Bounded τi and hi of selected Pareto-optimal system configurations (corre-
sponding to the frequently occurring task execution times) per variant, providing
the basis for the definition of system scenarios.

variants v.1 v.2 v.3 v.4 v.5 v.6 v.7 v.8 v.9 v.10

τi in s 0.028 0.042 0.034 0.066 0.040 0.069 0.051 0.100 0.038 0.045

hi in s 1/30 2/30 2/30 2/30 2/30 3/30 2/30 3/30 2/30 2/30

MSE

Utilisation

v.6, v.6�

v.8, v.8�

Figure 2.12: Validating the design time Pareto-optimal system configurations for each vari-
ant v .i with the corresponding HIL implementation v .i ′.

The performance metrics we consider are MSE (explained in Section 2.2.5) and
GPU utilisation. GPU utilisation is measured by the proprietary NVIDIA Nsight
software [99]. GPU utilisation gives the measure of the time spent by the applica-
tion in GPU kernel calls. For compute-intensive image-based applications sharing
the platform, minimising the utilisation is better.

The v .i in Fig. 2.12 correspond, as already explained, to the predicted design
points using our design flow and the v .i ′ correspond to the design points obtained
from actual implementation using the HIL simulator. Even though the numbers
vary between our design flow prediction and actual implementation, the trends we
observe for the different variants are the same. Recall that we used measured third
quartile execution times instead of WCET in our models. At run time, when we en-
counter the WCET or any violation of the (τi ,hi ) for v .i , we execute the worst-case
controller designed for (τwc ,hwc ). At runtime, a switched controller considering
the different variants has a much better MSE than the worst-case as there is no
aggressive switching, i.e. once we are running in a particular variant, the runtime
situation persists for some time. Notice that the QOC improves at runtime since
the controller executes in the frequently occurring system scenario.
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2.8 Conclusions

We introduced the SPADE approach with parallelization as a structured IBC (co-)
design flow. The presented SPADE approach considers sensing-application par-
allelism, workload variations, platform settings, and control parameters for an ef-
ficient design and implementation of an IBC system. Our SPADE approach opti-
mises control quality and maximises the effective resource utilisation for a given
platform allocation. We demonstrate the applicability of SPADE for both a pre-
dictable multiprocessor platform and for an industrial platform. Though appli-
cation timing is difficult to predict in industrial platforms, we show that we can
leverage existing predictable dataflow model-based design methods by carefully
co-designing the sensing implementation and the (switched) controller design us-
ing system scenarios.
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SPADe by pipelining

Image-based control (IBC) systems have a long sensing delay. The advent of multi-
processor platforms helps to cope with this delay by pipelining of the sensing task.
However, existing pipelined IBC system designs are based on linear time-invariant
models and do not consider constraint satisfaction, system nonlinearities, work-
load variations and/or given inter-frame dependencies, which are crucial for prac-
tical implementation. A pipelined IBC system implementation using a model-
predictive control (MPC) approach that can address these limitations making a
step forward towards real-life adoption is thus promising. We present an adaptive
scenario- and platform-aware design (SPADE) MPC formulation based on linear
parameter-varying input/output models for a pipelined implementation of IBC
systems. The proposed method maximizes quality-of-control by taking into ac-
count workload variations in the image processing for individual pipes in the sens-
ing pipeline in order to exploit the latest measurements, besides explicitly consid-
ering given inter-frame dependencies, system nonlinearities and constraints on
system variables. The practical benefits are highlighted through simulations using
vision-based vehicle lateral control as a case study (already introduced in Chapter
1). In this chapter, the SPADE approach focuses on pipelining without parallelis-
ing the sensing task. Chapter 4 focuses on pipelined parallelism.

3.1 Background and contributions

IBC systems refer to a class of data-intensive feedback control systems whose feed-
back is provided by camera sensor(s) (see Fig. 3.1). The combination of camera
sensor(s) and image processing algorithms is capable of detecting a rich set of
features in an image that can be used to compute the states of the system such
as relative position or distance, depth perception, and tracking of the object-of-
interest [101]. The challenge, however, is that there is an inherent long sensing
delay due to compute-intensive image processing algorithms [110].

A typical implementation of an IBC system uses an optimal linear quadratic
regulator (LQR) [37] considering the worst-case image workload and thus has

The content of this chapter is an adaptation of the following paper:
Sajid Mohamed, Nilay Saraf, Daniele Bernardini, Dip Goswami, Twan Basten, and Alberto Bempo-
rad. Adaptive predictive control for pipelined multiprocessor image-based control systems considering
workload variations. In 59th IEEE Conference on Decision and Control (CDC), 2020.

55
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Figure 3.1: An IBC system: block diagram (repeating Fig. 1.4 (a), for readability)

worst-case sensing delay [110] (illustrated in Fig. 3.2). However, this results in poor
effective resource utilisation in a multiprocessor platform, and suboptimal quality-
of-control (QOC) [46]. Multiprocessor platforms with high processing power that
allow parallel and pipelined executions can be used to cope with this long worst-
case sensing delay. The sensing algorithms may be parallelised (whenever possi-
ble, but limited by the degree of application parallelism) if the algorithmic struc-
ture is known (white/grey box) and thus reduce the worst-case sensing delay [110].
Pipelined control implementation executes the sensing algorithm in a pipelined
fashion with the worst-case sensing delay and thus reduces the effective actuation
and sampling rate [112], [69]. The advantage of a pipelined implementation is that
it is applicable even if the application algorithm is a black box. Note that for nomi-
nal control implementation, the sensor-to-actuator delay τ is at most equal to the
sampling period h, whereas for a pipelined control implementation τ is greater
than h.

However, pipelining is limited by inter-frame dependencies, i.e., the data or al-
gorithmic dependencies between consecutive frame processing, e.g., due to video
coding [77] or visual tracking [120]. Inter-frame dependence time (denoted by fd )
can be quantified for the current image frame as the maximum time required to
complete the processing of (parts of) the algorithm the subsequent image frame
processing depends on. Alternatively, fd is the maximum time required to wait
between processing consecutive image frames.

The sensing delay due to the compute-intensive processing (sensing) of the
image stream is dependent on image workload variations, which occur due to im-
age content and result in a wide range between best-case and worst-case image-
processing times. It is known from [46] that explicitly taking into account workload
variations in controller design improves the QOC. Workload variations are typically
considered as a variable delay or stochastic delay in standard sampled-data linear
control design techniques [100].

In current literature, workload variations are typically considered only
for sequential IBC implementation [46] and not for pipelined implementa-
tion [112], [69] (see Fig. 3.3). In [82], pipelining is considered along with variable
delay but the inter-frame dependencies are neglected. Further, these approaches
do not consider system nonlinearities, i.e., the variations in system dynamics, and
constraints imposed on the system variables, which can be crucial when consid-
ering a practical implementation. E.g., the maximum steering angle of the Udacity
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self-driving car is set to +/- 25 degree [132] and the vehicle velocity is kept constant
for the simulations in [68].

The main motivation of this work is to address limitations of the state-of-the-
art pipelined multiprocessor IBC approaches that do not take into account inter-
frame dependencies, system constraints and nonlinearities for the application of
interest. These limitations make it difficult for these approaches to be realised in
real systems.

Contribution: We extend the basic SPADE flow (introduced in Chapter 2) for
IBC system design for pipelined implementation without parallelising the sensing
task. Our approach explicitly takes into account the inter-frame dependencies.
Further, we present an adaptive predictive control formulation based on linear
parameter-varying (LPV) input/output (I/O) models for a pipelined multiproces-
sor implementation of IBC systems while considering workload variations, system
nonlinearities and constraints on system variables, and thus makes a step forward
towards real-life adoption. We also compare the proposed formulation with the
state-of-the-art multiprocessor IBC system implementations.

Recent advances in numerical optimization for MPC have enabled safety-
critical applications on embedded platforms, such as engine control and power-
train coordination in the automotive domain [13,14]. Moreover, the latest methods
such as those recently reported in [115] suggest that the model and MPC tuning
parameters can be adapted at runtime without reconstructing the optimization
problem. This allows implementing adaptive MPC with the same computational
complexity as the non-adaptive case. An MPC formulation is thus advantageous
for use in image-based control systems where, due to constraints, nonlinearities
and workload variations, an adaptive control method that maximizes control per-
formance is desirable.

Figure 3.2: Illustration of a workload distribution and a sequential IBC implementation
considering worst-case image workload. (Adapted from Fig. 1.4 (b) and (c), for
readability).
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Figure 3.3: Illustration of pipelined IBC system implementation with constant sampling pe-
riod h and: (a) with constant worst-case sensing delay; (b) considering workload
variations.

3.2 Pipelined IBC system implementation

We consider a typical setting for an IBC system as shown in Fig. 3.1 having the
workload distribution as illustrated in Fig. 3.2. The main sensor is a camera mod-
ule that captures the image stream. The image stream is then fed to an embed-
ded multiprocessor platform at a fixed frame rate or frames per second (FPS),
e.g., 60 fps. The image arrival period fh is the inverse of the frame rate, e.g.,
fh = 1/60 = 16.67 ms. The tasks in such an application primarily include compute-
intensive image sensing and processing (S), control computation (C) and actuation
(A) which are then mapped to run on a multiprocessor platform.

In a pipelined control implementation (see Fig. 3.3), the sensing operations to
read and process the system states start periodically at ts (S) = kh, where k is a non-
negative integer. The sampling period h is the interval between two consecutive
activations of the sensing operation that require image frames for processing. We
align ts (S) = kh with the availability of the frames as can be seen in Fig. 3.3 and
hence, h is an integer multiple of fh .

Sensing and processing is followed by control computation and actuation op-
erations, which generally take short and nearly constant time for execution. A
sensing operation takes much longer time due to compute heavy processing, i.e.,
eS À eC +e A , where eS , eC and e A are the worst-case execution times of sensing
and data processing, control computation and actuation tasks, respectively. The
total (worst-case) execution time of a loop is thus given by etotal = eS +eC +e A .

For a pipelined implementation, the sensor-to-actuator delay τ> h and it can
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Figure 3.4: Basic SPADE flow for pipelined implementation without parallelising the sens-
ing task. For the scope of this chapter, we assume that each pipe in the pipeline
is mapped to a single (unique) processing core and the cores are homogeneous.

be represented as [8]

τ= (n f −1) fh +τ f , where 0 < τ f ≤ fh , n f =
⌈etotal

fh

⌉
. (3.1)

The number of frames arriving within τ is n f . An assumption we make, for the
scope of this chapter, is that each pipe in the pipeline is implemented on one pro-
cessing core.

3.3 SPADE for pipelining

In this section, we explain the SPADE approach for pipelining without parallelis-
ing the sensing task. The basic SPADE flow for the pipelined implementation is
illustrated in Fig. 3.4. A key input parameter is the total number of available cores
navl

c that can be used. We assume for now that each pipe in the pipeline is mapped
to a single (unique) processing core and that there is no resource sharing between
the individual pipes. In addition, the allocated processing cores are assumed to be
homogeneous so that mapping a single pipe to any of the cores would result in the
same throughput and latency. These assumptions are relaxed in Chapter 4.

Figure 3.5: Scenario-aware dataflow (SADF) model of a single pipe for the generic pipelined
implementation. Execution time of sensing task S varies per scenario.
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3.3.1 Formal modelling and mapping

We can model the application and the platform as explained in Section 2.3. Since
there is no resource sharing between the individual pipes and each pipe is mapped
to a unique processing core, we can use the generic SADF model shown in Fig.
3.5 to compute the sensor-to-actuator delay and sampling period for a single pipe.
The scenario is determined by the execution time of the sensing task S. When there
is resource sharing between the pipes, the SADF model needs to be transformed
for mapping and scheduling. The model transformations are non-trivial and are
explained later in Section 4.4.

3.3.2 Timing analysis and system scenario identification

The sensor-to-actuator delay for a single pipe can be computed for the generic
SADF graph illustrated in Fig. 3.5 using the analysis method explained in Sec-
tion 2.3.1. We compute the best-case and worst-case sensor-to-actuator delays for
the best-case and worst-case workload scenarios per pipe. The best-case work-
load scenario results from the shortest execution time for the sensing task and the
worst-case workload scenario results from longest execution time for the sensing
task. After we compute the worst-case delay, we need to compute the effective
sampling period h considering the inter-frame dependencies and the platform
constraints, explained below. For the adaptive MPC formulation-based controller
design, we only need to do a runtime adaptation for considering workload varia-
tions (explained later in Section 3.5.2) and we do not need to reconfigure the map-
ping and scheduling (as was needed for the basic flow of the previous chapter).
This means that for the implementation proposed in this chapter, there is only
one system scenario. This system scenario should know the effective period h,
worst-case delay τ, effective number of frames skipped by a single pipe nd (de-
fined below), and the number of processing cores needed to maximise the gains
from pipelining nmax

c (defined below). Because of inter-frame dependencies, there
is a limit on the number of cores that gives performance benefits with pipelining.
τ is initially computed by mapping the synchronous dataflow (SDF) graph of the
worst-case workload scenario for a single pipe to one processing core of the given
platform allocation. We can then compute the nmax

c after considering the inter-
frame dependencies. The effective period h is then computed based on nmax

c and
the total number of available cores navl

c . Finally, we can compute nd such that the
delay τ can be expressed in multiples of the sampling period as τ= nd h+τ′, where
the remainder τ′ is 0 ≤ τ′ < h.

Adaptation with inter-frame dependencies

Inter-frame dependencies capture the data or algorithmic dependencies between
consecutive frame processing. Considering inter-frame dependencies is crucial for
practical real-life implementation. Inter-frame dependence time fd is the max-
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Figure 3.6: Illustration of inter-frame dependencies with fd > fh . Note: 1) Even if more
cores are available they cannot be used due to inter-frame dependencies; 2) Our
method as compared to [112] does not restrict τ to be an integer multiple of fh ;
3) If fd ≤ fh then h = fh using all four processing cores.

imum time required to wait between processing consecutive image frames due
to inter-frame dependencies. Fig. 3.6 illustrates the impact of inter-frame depen-
dence time on sampling period. In a pipelined implementation, considering inter-
frame dependencies means that strictly h ≥ fd . Further, h should be an integer
multiple of fh . For the scope of this chapter, we assume that fd is known or can be
computed. The computation of fd is explained later in Chapter 4.

Inter-frame dependencies mean that sometimes some image frames have to
be skipped for processing with respect to the given image arrival period fh and the
sampling period h. Skipping a frame means that h increases and thus degrades
the control performance [112]. The number of frames that has to be skipped after
processing every frame due to inter-frame dependencies is ns −1, as illustrated in
Fig. 3.6 where ns = 2 and one frame is skipped after every frame processing. The
number of frames we have to skip ns −1 is determined by the inter-frame depen-
dence time fd . The earlier mentioned nd needed for defining the system scenar-
ios is computed based on the effective h and τ at runtime; we always have that
ns ≤ nd . ns is a constraint imposed by the inter-frame dependencies and nd is
the effective number of frames we skip at runtime considering the platform con-
straints and ns .

The effective image arrival period or the minimum possible sampling period
hmi n we can then have is

hmi n = ns × fh , where ns =
⌈ fd

fh

⌉
.

The assumption here is that a sufficient number of processing cores navl
c is avail-

able for pipelining.

Adaptation with the available number of processing cores

Another crucial aspect to consider for practical implementation is the number
of available processing cores. A maximal pipelined implementation is defined
as the pipelined implementation without skipping or dropping feasible image
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frames considering inter-frame dependencies and camera frame rate. A maximal
pipelined implementation is achieved when the realisable periodic sampling pe-
riod h = hmi n . E.g. Fig. 3.6 illustrates a maximal pipelined implementation with
ns = 2. The number of processing cores needed to realise the maximal pipelined
implementation nmax

c and the effective sampling period h considering navl
c are

defined as follows:

nmax
c =

⌈n f

ns

⌉
, h =

⌈nmax
c

navl
c

ns

⌉
× fh , if navl

c < nmax
c ,

= ns × fh , otherwise.

where navl
c is the total number of available processing cores. Having more cores,

i.e. navl
c > nmax

c , does not help as there are no more frames available for pipelin-
ing. However, if navl

c < nmax
c , there are not enough cores available to process the

arriving frames n f and thus h has to be increased and a maximal pipelined imple-
mentation cannot be achieved.

3.3.3 Controller design and workload variations in a pipelined
IBC system

The contribution of this chapter is the control design method using an adaptive
MPC formulation for the pipelined implementation. The controller design needs
to know h, τ and nd . The details are explained in Sections 3.4 and 3.5. In this
section, we first analyse the impact of workload variations in a pipelined imple-
mentation.

The workload variations occur due to varying features in image content (see
Fig. 3.2). When we do not consider workload variations, a pipelined implementa-
tion results in constant τ and h, as illustrated in Fig. 3.3(a). Notice that here we
measure the outputs y(k + i ) for the input image frame at k + i with a constant
worst-case sensing delay of τ, where for simplicity of notation, by k + i we denote
the time instant (k + i )h with i an integer.

Considering workload variations in a pipelined implementation of an IBC
system implies that we would have varying sensing delays, e.g., as illustrated in
Fig. 3.3(b). For this example, notice that the camera input frame at k + 4 has a
sensing delay of one frame (τ1 = h), at k + 3 has a sensing delay of two frames
(τ2 = 2h) and all other frames have a sensing delay of three frames (τ = 3h). This
scenario results in multiple sensing and image processing (S) tasks completing
their execution at the same time. What this means is that multiple output mea-
surements y(k+2), y(k+3) and y(k+4) are available for control computation task
C at the same time instance and no measurements arrive at the next two sampling
instances.

Thus, the main challenge for the pipelined IBC system design to maximize per-
formance, i.e. QOC, is to effectively use the sensor measurements as early as pos-
sible for control computation without any unnecessary idling and to predict the
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system state when there are no sensor measurements available. Modelling this
behaviour is far from trivial.

3.3.4 Runtime mechanism

The mapping and scheduling is static at runtime for the pipelined implementa-
tion explained in this chapter. A runtime mechanism is needed to keep track of
the latest sensing measurement that is available for the MPC computation. The
sensing task should store the timestamp of the latest image processed and the cor-
responding sensing measurement in p memory locations (one for each pipe). At
the start of the control compute task, the runtime mechanism needs to read the
p memory locations with the timestamps, compute the nd for each and choose
the sensing measurement corresponding to the lowest nd value. The MPC also re-
quires the nd value to adapt the optimization problem formulation as explained
in Section 3.5.2. The overhead for reading the p memory locations and computing
nd , though negligible, is part of the control compute task.

3.4 Modelling and discretization

In this chapter, we consider a broad class of systems that can be described via LPV
models for the predictive control approach. Specifically, this section first describes
continuous-time state-space linear models which are typically obtained from first-
principles. Next, a discretization scheme is described followed by details on trans-
formation of the linear model to (I/O) form which is more suitable for the pro-
posed control method considering the varying sensor-to-actuator delay.

3.4.1 Continuous-time model with input delay

The continuous-time LPV model we consider can mathematically be described at
time t as

ẋ(t ) = Ac (p)x(t )+Bc (p)u(t −τ) (3.2a)

y(t ) =Cc (p)x(t ) (3.2b)

where x ∈ Rnx denotes the state vector, y ∈ Rny contains measured outputs and
u ∈ Rnu is the vector of control inputs. Vector p ∈ Rnp contains the scheduling
parameters which determine the model coefficients in matrices Ac , Bc and Cc

as shown in Eq. (3.2). The sensor-to-actuator delay is denoted by τ and τ > 0.
Continuous-time models are useful for an accurate simulation of the system under
study; however, for computer-based control, it is necessary to have a discrete-time
model considering sampled signals.
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3.4.2 Discrete-time model

State-space description

Based on a zero-order hold (ZOH) approximation where we assume the input sig-
nal to be constant over each sampling interval, we can use the methods described
in [8] to obtain the discrete-time LPV model

x(kh +h) =Φ(p)x(kh)+Γ0(p,τ′)u(kh −nd h)

+Γ1(p,τ′)u(kh −nd h −h) (3.3)

where h is the sampling period, k is an integer indicating the time step, and

Φ(p) = e Ac (p)·h (3.4a)

Γ0(p,τ′) =
h∫

τ′
e Ac (p)·(h−s)ds (3.4b)

Γ1(p,τ′) =
τ′∫

0

e Ac (p)·(h−s)ds (3.4c)

such that the total delay τ can be expressed in multiples of the sampling period
as τ= nd h +τ′, where the remainder τ′ is 0 ≤ τ′ < h. In practice, only a numerical
approximation of the matrix exponential is used to compute the model matrices in
Eq. (3.4), for which several methods exist. Specifically, for the example discussed in
Section 3.6, we approximate the matrix exponential by using its 12th degree Taylor
polynomial.

When some states do not need to be controlled, the size of the control prob-
lem may unnecessarily become large especially if the number of output variables
is relatively small. This motivates the use of I/O models for control, which also
allow an easy incorporation of delay as shown in Sections 3.4.2-3.4.2. In the linear
model case, the I/O equations may simply be derived from the equivalent trans-
fer function of the state-space model. Note also that linear models obtained from
data-based system identification methods are often parameterized in I/O form.

Input/output difference equations

The state-space model (3.3) can be written as the following I/O model

y(k) =Cc (p)
(
q I −Φ(p)

)−1
Γ0(p,τ′)u(k −nd )

+Cc (p)
(
q I −Φ(p)

)−1
Γ1(p,τ′)u(k −nd −1)

where q denotes the forward shift operator such that q y(k) = y(k + 1) and
q−1 y(k) = y(k − 1) and for ease of notation we dropped h by assuming the time
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scale in terms of sampling period. The symbol I denotes an identity matrix of
appropriate size. On simplification of the above difference equations, the multi-
variable LPV model can be rewritten in the noise-free auto-regressive exogenous
(ARX) form as

y(k) =
nx∑
j=1

A j (p)y(k − j )+
nx+nd+1∑

j=1
B j (p,τ′)u(k − j ) (3.5)

where the coefficient matrices A j (p) are derived by evaluating the determinant of(
q I −Φ(p)

)
whereas entries of B j (p,τ′) are derived from its adjugate matrix, Cc (p),

Γ0 and Γ1.

Adapting the I/O model with time delay

Observing (3.5), it is clear that for j = {1, . . . ,nd }, B j = 0, where 0 is a zero matrix.
Therefore, an increase in delay nd implies an according zeroing of the foremost
input coefficients, without a change in the size of the MPC problem as clarified
in Section 3.5. This also allows fixing the memory allocation for the model and
the control algorithm based on the worst-case delay which can reasonably be as-
sumed to be known. For further simplicity in the design and implementation of the
controller, we assume τ′ and h to be constant. The delay τ′ can be set to zero, es-
pecially when it varies, by a unit increment in nd to simplify the model evaluation
as Γ1 becomes a zero matrix referring Eq. (3.4c). The influence of this simplifica-
tion is negligible when h is sufficiently small.

3.5 Predictive control strategy

This section discusses the details on formulating the adaptive predictive control
problem based on the LPV model (3.5) with varying time delay. The reader is re-
ferred to [20] for basic terminology and details related to MPC.

3.5.1 Optimization problem formulation

The MPC problem is formulated based on a performance index which reflects the
control objectives and a set of constraints including the equalities due to the LPV
prediction model (3.5). We consider a quadratic performance index J that penal-
izes output tracking error and deviation of inputs from steady-state targets, i.e.,

J (k) =
Np(k)∑

j=1

1

2
‖Wy (k + j ) · (y(k + j )− yr (k + j ))‖2

2

+
Np(k)−1∑

j=0

1

2
‖Wu (k + j ) · (u(k + j )−ur (k + j ))‖2

2
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where Wy (k) and Wu(k) denote weights on output and input respectively at time
step k whereas yr and ur denote their target values. The prediction horizon Np(k)
determines the number of decision variables i.e., the inputs and outputs in pre-
diction to be optimized. Considering simple bounds on the decision variables, the
MPC problem to be solved at each time step is the constrained optimization prob-
lem

min
u(·),y(·)

J (k)

s.t. y(k + l ) =
nx∑
j=1

A j (p)y(k + l − j )+
nx+nd (k)+1∑

j=1
B j (p)u(k + l − j )

= M(p,nd (k)) ·φ(k + l −1),∀l ∈ {1, . . . , Np} (3.6a)

u(k + j ) = u(k +Nu −1),∀ j ∈ {Nu, . . . , Np} (3.6b)

y(k) = y0 (3.6c)

φ(k) =φ0 (3.6d)

yl(k + j ) ≤ y(k + j ) ≤ yu(k + j ),∀ j ∈ {1, . . . , Np} (3.6e)

ul(k + j ) ≤ u(k + j ) ≤ uu(k + j ),∀ j ∈ {1, . . . , Nu} (3.6f)

where M in (3.6a) is the matrix of parameter-dependent model coefficients such
that φ(k) = [y>(k), y>(k − 1), . . . , y>(k − nx ),u>(k − 1),u>(k − 2), . . . ,u>(k − nx −
nd (k)− 1)]>. The upper and lower bounds on any variable z are denoted as zu

and zl, respectively. The initial condition (3.6c)-(3.6d) in the I/O case is provided
via the measured output feedback y0, and vectorφ0 which also includes the known
past sequence of inputs and outputs. The input sequence that is optimized is typ-
ically restricted to fewer variables for trading-off control performance with com-
putations via the control horizon (Nu) constraint (3.6b), i.e., by tuning the param-
eter Nu such that 1 ≤ Nu < Np, where Np > nd . Note that the future values of pa-
rameters p can be incorporated as they may be known and in that case p repre-
sents p(k + l ) in the LPV model (3.6a).

3.5.2 Adaptation with workload variations

In IBC, besides control computation and actuation time, the sensor-to-actuator
delay mainly includes the sensing time. We assume that the delay due to control
computation and actuation are fixed, but the sensing delay may vary as explained
in Section 3.3.3. We propose to adapt the controller at runtime to make immedi-
ate use of the latest available measurement in order to maximize QOC. The basic
idea is to have the time delay as a variable parameter based on which the model
is adapted as explained in Section 3.4.2. The varying parameter (nd ) is then kept
constant in prediction as shown in (3.6a). Since the actuation rate can be constant
thanks to pipelining, a new control action is computed at each time step with a
ZOH during the sampling period.

The following three cases may occur at each time step due to varying sensing
delay (illustrated in Fig. 3.7):
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Figure 3.7: Illustration of cases described in Section 3.5.2. The samples k +3 and k +4 have
lower workloads and thus the latest output measurement y(k + 4) is available
within one fh . Note that for case 2, the latest measurements are not available
and thus u(k + i ) is computed based on the MPC prediction model.

1. the new measurement is available with the same sensing delay as in the
previous step: in this case the parameter nd is kept constant and the ini-
tial condition for computing the new control input is updated as usual, i.e.,
φ= [y>(k−1), . . . , y>(k−nx ), · · · ]> becomesφ= [y(k), . . . , y>(k−nx+1), · · · ]>;

2. the sensing delay is increased compared to the previous step as the latest
measurement is not available: in this case, the prediction is done starting
from the old measurement, i.e., the delay parameter nd is incremented by 1
and the stack of past outputs in φ is not updated.

3. the sensing delay is reduced by one or more steps: when multiple pipes fin-
ish processing a corresponding sequence of frames, both the latest measure-
ment(s) along with the past measurements now available are fed to the con-
troller and nd is accordingly reduced where, from an implementation per-
spective, the output stack in the initial condition φ is updated as in case 1
discussed above and the same procedure is then repeated as many times as
the reduction in nd before computing the next control input.

Since a new control input is applied at each step, the stack of past inputs in the
initial condition vectorφ is always updated by a unit shift in all the three cases, i.e.,
in φ = [· · · ,u>(k − 1), . . . ,u>(k −n)]> becomes φ = [· · · ,u>(k), . . . ,u>(k −n + 1)]>.
In conclusion, until the next measurement is available, the proposed controller
compensates for the delay by making use of the prediction model to implicitly es-
timate the current status of the system (without a separate open-loop estimator)
while accordingly computing an optimal action that satisfies given constraints.

The ordering of measurements is important in the current MPC implementa-
tion since we do not want to allow discarding measurements (as the application we
consider, in Section 1.7, is safety-critical). This can be considered as a limitation
of the current approach. Ordering means that the latest measurement y(k + i ) is
updated in the output stack φ iff the previous measurements y(k + j ), j < i , were
already updated in φ.
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3.6 Simulation results and comparison

We illustrate our work using the motivating case study of a vision-based lateral
control system explained in Section 1.7 and described as follows.

ẋ(t ) = Ac (vx )x(t )+Bc u(t −τ), y(t ) =Cc x(t ), (3.7)

3.6.1 MPC implementation

Based on a discretized version1 of (3.7) using methods discussed in Section 3.4.2,
the optimization problem (3.6) can be formulated for MPC with longitudinal ve-
locity vx and delay parameter nd as the scheduling variables. Constraints are im-
posed on the control input δ f . In (3.6a), vx may be assumed either to be a constant
in prediction or a variable, as described in Section 3.5.1. Since for the considered
lateral control system, problem (3.6) has a quadratic cost function subject to linear
constraints, it can be solved using any quadratic programming (QP) algorithm.
We use the methods described in [115] for an efficient implementation. Specifi-
cally, the QP problem (3.6) is transformed to the following box-constrained least-
squares problem by eliminating equality constraints through quadratic penalties
with large weight ρ, i.e.,

min
u(·),y(·)

J (k)+ρ
Np∑
l=1

∥∥y(k + l )−M(p,nd (k)) ·φ(k + l −1)
∥∥2

(3.8)

s.t. (3.6e)-(3.6f), (3.9)

and by substituting (3.6b)-(3.6d) in the cost function. Following [115], we im-
plement the optimization algorithm such that it is not only able to automatically
adapt to changes in parameters p including nd but also MPC parameters such as
the horizons Nu, Np, and the tuning weights through which the controller can be
re-tuned at run time. Besides this, as problem (3.8) is always solvable, this method
has a practical benefit as it is also able to deal with situations under which the con-
strained QP (3.6) might become infeasible to solve due to model mismatch and
unmeasured disturbances.

3.6.2 Controller performance evaluation

This section includes simulation results for our case study. We consider two sce-
narios: 1) the adaptive MPC algorithm is run with a constant worst-case delay, i.e.
neglecting workload variations, and 2) with delay as a variable to explicitly con-
sider workload variations, without changing any tuning parameters. The purpose
of this simulation is to highlight the benefits of the control design that also adapts

1The symbolic math toolbox of MATLAB R2015b was used for obtaining the required discrete-time
LPV model from (3.7)
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Table 3.1: Comparison between the proposed pipelined SPADE MPC approach with the
state-of-the-art multiprocessor IBC system implementations

Criteria SPADE pipelined MPC
Pipelined

Chapter 2
constant delay [112], [69] variable delay [82]

Inter-frame depen-
dencies

explicitly considered not considered not considered independent

System nonlineari-
ties

explicitly considered not considered not considered not considered

Constraints on vari-
ables

can be strictly im-
posed

cannot be imposed cannot be imposed cannot be imposed

Control computa-
tion time

high (worst-case up
to 15x greater than
Chapter 2)

low medium (a delay
predictor needed)

low (feedback gain
matrix multiplica-
tion)

Algorithm white/gray/black
box

white/gray/black
box

white/gray/black
box

white/gray box

Parallelisation
potential

independent independent independent should be high

Workload varia-
tions

explicitly considered
in design

not considered indirectly consid-
ered as variable
delay

explicitly considered
in design

Platform suitable for homo-
geneous

suitable for homo-
geneous

can be adapted for
all

directly applicable
for all

Restrictions on h1 strictly periodic; h <
τwc

strictly periodic; h <
τ

strictly periodic; h <
τwc

switched system
possible

Restrictions on τ strictly2τwc > h strictly τ > h;
in [112], τ is strictly
a multiple of h

strictly2τwc > h τwc ≤ h

τwc : worst-case delay; 1 If camera frame arrival period fh is considered, always h is a multiple of fh ; 2 if τ≤ h design reverts to sequential;

well with workload variations. The influence of delay is apparent with model mis-
match and unmeasured disturbances. Since the true system considered is the
continuous-time model (3.7) and discretization errors are negligible, in order to
emulate the influence of realistic model mismatch and unmeasured disturbances,
we provide the output reference for vehicle lateral control along with the output
measurement, i.e., with a varying delay. Note that this is done only for this par-
ticular simulation scenario and is not the case in practice where the reference is
already known.

We assume the camera frame rate of 60 fps, i.e., fh = 1/60 s. Simulation length
is 5000 time steps i.e. T = 83.33 s. Unit weights are imposed on all I/O variables
for MPC, while Np = Nu = 10 time steps. The steady-state input reference ur (t ) = 0
whereas the output reference profile is set to a sinusoidal signal such that at time
step k, yr (k) = 2.5 ·sin(5khπ/T ) m. The longitudinal velocity is a ramp signal such
that vx (0) = 45 and vx (T ) = 80 km/h, which we assume to be known in prediction
for the controller.

The mean runtime for the control algorithm was 2.2 ms while solving the
optimization problems with 20 decision variables in MATLAB (on a computer
equipped with a 2.6GHz processor). Referring to the reported runtimes in [115]
for control problems of comparable size, we expect a similar efficient embedded
implementation of the algorithms with a C backend to significantly reduce these
runtimes (roughly by 20x, to about 0.1 ms) on a processor with comparable speci-
fications. Assuming that the target platform is around 60 times slower, the worst-
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Figure 3.8: Lateral position of the vehicle w.r.t. the road centre.

case execution time (WCET) of tasks S, C and A are eS = 60 ms (based on Chapter
2), eC = 6 ms [115] and e A= 0.5 ms, respectively. This results in worst-case delay
τ= 66.5 ms and n f = 4.

We assume that the inter-frame dependence time fd is given and fd = 15 ms.
So ns = 1 and the maximum number of cores needed nmax

c = 4. We assume that
navl

c = 4 and thus h = 1/60 s. To simulate the workload variations for the vari-
able delay scenario, we consider the delay to be a random signal where the de-
lay may take any value nd h which is held constant for every 20 frames such that
nd ∈ {1,2,3,4} with the corresponding probability distribution of occurrence as
{0.2435,0.3534,0.3073,0.0958}. Such a probability distribution for characterising
workload variations can be statistically analysed from observed data [46].

Based on the aforementioned simulation implemented in MATLAB on a com-
puter equipped with a 2.6GHz processor, the results obtained show that a root
mean square error (RMSE) of 2.98 cm from the output reference is achieved us-
ing MPC considering a variable delay. For MPC based on constant (worst-case)
delay the RMSE increases by 26.85% to 3.78 cm, as is clearly seen in Fig. 3.8. The
improvement by handling workload variations is expected to be higher when the
worst-case delay is considerably larger than its mean.

In the simulation, we considered the following aspects which are crucial for
real-life practical implementation. 1) inter-frame dependencies: fd = 15 ms; 2)
system nonlinearities: vx is a ramp signal; 3) constraints: δ f constrained to max-
imum magnitude of 0.5 radians; and 4) workload variations as a variable delay
based on probability distribution.

3.6.3 Comparison with the state-of-the-art

We compare the proposed MPC formulation for pipelined IBC implementation
with state-of-the-art multiprocessor IBC design techniques in Table 3.1. For
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brevity, we only compare with multiprocessor IBC system implementations and
not with traditional sequential control design techniques based on the worst-case
sensing delay, as it has already been shown in [46] that considering workload
variations is beneficial for optimizing control performance. The multiprocessor
implementations can be classified into pipelined [112], [69] with constant delay,
pipelined with variable delay [82] and sequential implementation with parallelis-
able sensing (explained in Chapter 2). The camera frame rate, however, is not ex-
plicitly considered in [69].

The proposed approach is advantageous to others with respect to: 1) consid-
ering inter-frame dependencies; 2) modelling and considering system nonlineari-
ties; and 3) strictly imposing constraints on the system variables. These aspects are
crucial for practical implementation and explicitly considering them helps in mak-
ing a step forward towards real-life adaptation. The proposed approach, however,
requires higher worst-case control computation time eC (up to 15x greater than
in Chapter 2) due to solving the online optimization problem. Note that eC is not
yet significant compared to the sensing workload, i.e., eS À eC +e A . Future work
includes identifying a case where eC can be significant compared to the sensing
workload and adapting our method for it.

3.7 Conclusions

We presented a pipelined, multiprocessor, adaptive MPC formulation for IBC sys-
tems while considering workload variations, inter-frame dependencies, system
nonlinearities and constraints on system variables. The proposed approach aims
to reduce the gap between current state-of-the-art multiprocessor IBC approaches
and practical control requirements while optimizing quality-of-control and mak-
ing a step forward towards real-life adoption. First results based on simulations
suggest that by using the proposed method one can address practical implemen-
tation challenges not directly dealt with in the past approaches, which either did
not consider variations in sensing delay, or inter-frame dependencies, presence of
nonlinearities in system dynamics, or practical constraints on system variables.
The results presented in this chapter assume that each pipe in the pipeline is
mapped to a single (unique) processing core and there is no resource sharing be-
tween the individual pipes. In addition, the allocated processing cores are as-
sumed to be homogeneous so that mapping a single pipe to any of the cores would
result in the same throughput and latency. These assumptions will be relaxed in
Chapter 4.



4



4

SPADe by pipelined parallelism

Image-based control (IBC) systems have a long sensing delay due to compute-
intensive image processing. Modern multiprocessor IBC implementations con-
sider either parallelisation of the sensing task or pipelining of the control loop to
cope with this long delay. Chapter 2 already discusses multiprocessor IBC im-
plementations considering parallelisation of the sensing task, and Chapter 3 dis-
cusses the pipelining of the control loop without parallelising the sensing task. The
impact of both parallelisation and pipelining together on the quality-of-control
(QOC) of IBC systems was not explored in the literature prior to this work. We
present the complete version of the scenario- and platform-aware design (SPADE)
approach (briefly summarised in Chapter 1) for multiprocessor IBC implemen-
tation, considering both parallelisation and pipelining together. In particular, we
address the following problem: For a given platform allocation, what is the optimal
degree of pipelining and degree of parallelisation required to maximise the QOC?
The proposed method takes into account image-workload variations, inter-frame
dependencies and platform constraints. The application is efficiently modelled
and analysed using a scenario-aware dataflow graph, and an implementation-
aware switched controller is designed that optimises QOC and guarantees stability.
We validate the proposed method using simulations and hardware-in-the-loop ex-
periments, considering the lane-keeping assist system (LKAS) already introduced
in Chapter 1.

4.1 Background and contributions

IBC systems are feedback control systems whose feedback is provided by cam-
era(s) as the sensor(s) (illustrated in Fig. 4.1 (a)). A camera captures image frames
at a pre-defined constant frame rate from the dynamic system environment. A
compute-intensive image-processing algorithm processes the image frames to de-
tect features in the image such as objects, traffic signs and lanes. These features are
then used to compute the states of the system, such as relative position and dis-
tance [29]. A controller computes the control input for actuation using the com-

The content of this chapter is an adaptation of the following paper:
Sajid Mohamed, Dip Goswami, Sayandip De, and Twan Basten. Optimising multiprocessor image-
based control through pipelining and parallelism. IEEE Access, 9:112332–112358, 2021.
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Figure 4.1: An IBC system: (a) block diagram; (b) Gantt chart for a typical IBC implemen-
tation; (c) workload variations captured as a distribution. (repeating Fig. 1.4, for
readability)

puted states. The actuation task applies the computed control input to the IBC
system.

A typical periodic implementation of such an IBC system is illustrated in
Fig. 4.1 (b). The main challenge here is to deal with the inherent long (worst-case)
sensing delay due to compute-intensive image-processing algorithms. A long pro-
cessing delay results in dropping some camera frames from processing. Moreover,
the sensing delay is variable due to image-workload variations [86]. These varia-
tions can be captured statistically using a probability distribution [1] (illustrated
in Fig. 4.1 (c)). A long worst-case sensing delay leads to a long sensor-to-actuator
delay τ (the time between the start of a sensing task and the end of the correspond-
ing actuation task) and thus results in degraded control performance [8, 117]. The
question is: How to cope with the long variable sensing delay in an IBC system?

The advent of multiprocessor platforms enables coping with the long sensing
delay by either parallelising the sensing task (explained in Chapter 2) or pipelin-
ing the control loop [69,112]. Parallelisation refers to executing sensing subtasks in
parallel and thereby reduces the delay compared to the worst case (illustrated in
Fig. 4.2 (a)). It is, however, limited by the degree of parallelism of the sensing al-
gorithm. Pipelining refers to the pipelined execution of the control loop over mul-
tiple processing cores. Pipelining helps to reduce the number of camera frames
being skipped. It reduces the sampling period h (the time between the start of
two successive sensing tasks) by processing frames on available cores (illustrated
in Fig. 4.2 (b)). Pipelining is, however, limited by the presence of inter-frame de-
pendencies, i.e., the data or algorithmic dependencies between consecutive frame
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Figure 4.2: IBC implementations for worst-case image workload: (a) Parallelisation of sens-
ing; (b) Pipelining without resource sharing; (c) Pipelining and parallelism to-
gether with resource sharing. Note: 1) Sensing task S is composed of image signal
(pre-)processing (I), region-of-interest (ROI) detection D, ROI processing P, and
ROI merging Mexplained in Section 4.3.1; 2) P0 and P1 are the two processing
cores.

processing, e.g., due to video coding [77] or visual tracking [120]. In literature, the
controller implemented for the pipelining is for τ> h [69, 112] and for parallelisa-
tion is for τ≤ h [91, 93] (and Chapter 2 of this thesis).

Why should we consider pipelining and parallelism together? Pipelining does
not reduce the delay τ compared to the worst case. By executing the frames in a
pipeline, only h is reduced, whereas parallelising the sensing tasks reduces τ. How-
ever, h is still at least τ for a parallel implementation. Considering both pipelin-
ing and parallelism together helps to reduce both τ and h and thereby improves
the QOC of our IBC system. Further, the inherent limitations of pipelining - due
to inter-frame dependencies - and parallelism - due to a limited degree of paral-
lelism of the algorithm - can be mitigated significantly by considering them both
together. The challenge then is to identify the optimal implementation choice con-
sidering both the degrees of pipelining and parallelism that improves the system
performance. The degree of pipelining is quantified by the maximum number of
active pipes in the pipeline, and the degree of application parallelism is quantified
by the maximum amount of parallel execution within one sensing task. Both are
limited by the available processing resources.

Challenges: The literature prior to this work does not explore the impact of both
pipelining and parallelism together on the QOC of IBC implementation. Exist-
ing pipelined IBC implementations [69, 112] assume that the mapping is given,
and that each pipe is mapped to a unique resource without any resource sharing
between pipes. This is a restrictive implementation choice. Inter-frame depen-
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dencies, which are crucial for practical implementation, are also not considered.
We considered inter-frame dependencies in the previous chapter, and consider
them integrally in combination with parallelisation in this chapter. There are two
main challenges that were not explicitly explored prior to this work. First, how to
model a multiprocessor IBC system considering both pipelining and parallelism
together? The challenge in modelling is to explicitly consider workload variations,
inter-frame dependencies and constant (often periodic) control timing parame-
ters τ and h. Second, how to identify the optimal mapping of the sensing task
on shared processing resources that considers both pipelining and parallelism to-
gether and provides a tight analytical bound on control timing parameters τ and h
so as to optimise QOC.

As already motivated, we chose scenario-aware dataflow (SADF) [129] as our
model-of-computation (MOC) as it inherently supports modelling scenarios and
has tool support for timing analysis and platform-aware mapping. Existing map-
ping analysis tools [5,123] typically assume that each node (subtask or actor) in the
graph is bound to one processing resource. Pipelining involves (possibly) concur-
rent executions of subtasks on multiple resources, with inter-frame dependencies
between actor instances. Moreover, control assumes careful time-triggered execu-
tion of sensing and actuation tasks. All these aspects can only be analysed after
non-trivial graph transformations (as e.g. exemplified in [70]).

Fig. 4.2 (c) illustrates an implementation of two pipes on a shared platform
allocation of two processors, with each pipe having a parallelised sensing sub-
task. With parallelised pipes but without resource sharing between pipes, we
would need four processors to achieve the same delay and period as obtained in
Fig. 4.2 (c). To integrally consider pipelining and parallelisation on a shared multi-
processor platform, we need an efficient analysis to identify the optimal mapping.
The mapping should guarantee the required (often constant) worst-case delay and
period for the controller design.

The contributions of this chapter are as follows:

1. We extend the SPADE approach, presented in Chapters 2, by considering
pipelining of the control loop and formalising the IBC system modelling.
This complete version of the SPADE approach (as explained in Section 4.3)
integrally considers pipelining and parallelism for a multiprocessor IBC im-
plementation. The exact problem addressed is the following: For a given
multiprocessor platform allocation, identify the optimal design choice for
an IBC system considering both pipelining and parallelism and explicitly
considering image-workload variations, inter-frame dependencies, resource
sharing between pipes and platform constraints. The optimal design choice
identifies the degree of pipelining and degree of parallelism required for
maximising the QOC and is translated into system configurations that guar-
antee control timing parameters.

2. We propose model transformations for modelling, analysing, and mapping
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the IBC system. The model transformations for pipelined parallelism are
the main contribution. These transformations consider both pipelining and
parallelism together (as explained in Section 4.4). The model transforma-
tions allow us to relate the dataflow timing (throughput and latency) analysis
to the key control timing parameters (h and τ) and to optimise the mapping
while integrally considering pipelining and parallelism along with workload
variations, inter-frame dependencies and resource-sharing between pipes.
Implementation-aware model transformations for model-based design of
IBC systems are not considered in prior literature.

3. We validate our approach using Matlab simulations considering a pre-
dictable multiprocessor platform - composable and predictable multipro-
cessor system-on-chip (COMPSOC) [55] - and using hardware-in-the-loop
(HIL) experiments with an industrial heterogeneous multiprocessor plat-
form - NVIDIA AGX Xavier - considering a LKAS. Both platforms and the
LKAS case study were already introduced in Chapter 1.

The rest of the chapter is organised as follows. Section 4.2 describes the mul-
tiprocessor IBC system implementation and the QOC metrics. Section 4.3 details
the SPADE design flow. Section 4.4 introduces the model transformations required
for the SPADE design flow to analyse pipelined parallelism. Section 4.5 revis-
its the SPADE design flow and precisely describes an algorithm using the model
transformations and other considerations for pipelined parallelism. Section 4.6
explores the experimental results, the design-space exploration (DSE), and com-
pares SPADE with the state-of-the-art multiprocessor IBC system implementa-
tions. Section 4.7 presents the SPADE adaptation for an industrial platform, the
NVIDIA AGX Xavier, and validates the results of our approach in a HIL setting.
Section 4.8 concludes the work and suggests possible future directions.

4.2 Multiprocessor IBC implementation

We consider a typical setting for an IBC system as shown in Fig. 4.1 (a) having the
workload distribution as illustrated in Fig. 4.1 (c). The main sensor is a camera
module that captures the image stream. The image stream is then fed to an em-
bedded multiprocessor platform at a fixed frames per second (FPS), e.g. 60 fps and
image arrival period fh given by fh = 1/60 = 16.67 ms. The tasks include compute-
intensive image sensing and processing (S), control computation (C), and actua-
tion (A), which are then mapped to run on a multiprocessor platform. We illustrate
our work using the motivating case study of a vision-based lateral control system
model explained in Section 1.7. Further, we consider predictable and composable
multiprocessor system-on-chip (MPSOC) platform COMPSOC (explained in Sec-
tion 1.3.1) for illustrating the SPADE flow for pipelined parallelism. We also adapt
the SPADE approach for the industrial platform NVIDIA AGX Xavier (explained in
Section 1.3.3) to demonstrate its applicability in an industrial context.
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4.2.1 Control system and embedded implementation

We consider a linear time-invariant (LTI) feedback control system model for IBC
given by:

ẋ(t ) = Ac x(t )+Bc u(t ), (4.1)

y(t ) =Cc x(t )+Dc u(t ),

where x(t ) ∈Rn represents the state vector, y(t ) ∈R contains the measured output
and u(t ) ∈ R represents the control input of the system at any time t ∈ R≥0. Ac ,
Bc , Cc and Dc represent the system, input, output and feedforward matrices of
appropriate dimensions.

The model of Eq. 4.1 is a slight generalization of the model used in Chapter 2,
including the feedforward matrix. The embedded implementation we consider
is already explained in Section 2.2.2. We assume that the start of sensor-data
processing is aligned with the camera frame arrival, i.e., h is an integer multi-
ple of fh . Also, the control computation task and actuation task are delayed, if
needed, to guarantee a constant τ such that ts (C k ) = ts (Sk ) + τ− eC − e A , and
ts (Ak ) = ts (C k )+ eC . For a non-pipelined implementation (see Fig. 4.2 (a)), τ ≤ h,
i.e., ts (Sk+1) ≥ ts (Sk ) + τ. For a pipelined implementation (see Fig. 4.2 (b), (c)),
τ > h, i.e. ts (Sk+1) < ts (Sk )+τ. With sensor-to-actuator delay τ and a zero-order-
hold mechanism with sampling period h ∈ R, u(t ) becomes piecewise constant in
the intervals t ∈ [kh +τ, (k +1)h +τ] for k ∈Z≥0.

The main challenge here is to compute tight τ and h for a multiprocessor IBC
implementation. Identifying the optimal mapping that guarantees a constant τ
and h, considering both pipelining and parallelism together, is non-trivial.

4.2.2 QOC metrics for control stability and performance

We evaluate the QOC of our IBC system design choices by considering stability
and performance. Stability margins - gain and phase margins [125] - quantify the
control stability and give an analytical basis to compare two different IBC sys-
tem design choices and thus allow us to identify the optimal degree of pipelining
and application parallelism. Once we make a choice, we can further optimise the
controller with respect to performance, considering mean square error (MSE) (ex-
plained in Section 2.2.5) and settling time (ST).

The gain margin and phase margin quantify the additional gain and phase lag
that makes the system marginally stable. Systems with greater stability margins
can withstand greater changes in system parameters before becoming unstable.
Gain margin and phase margin are computed analytically from the system model.
On the other hand, MSE and ST can be analysed only through simulations.
Gain margin (GM): The gain margin (GM) is defined as the change in open-loop
gain expressed in decibels (dB), required at 180 degrees of phase shift to make the
system unstable. The GM is the difference between the magnitude curve and 0dB
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at the point corresponding to the frequency that gives us a phase of -180 degrees
(the phase cross-over frequency).
Phase margin (PM): The GM is the change in open-loop phase shift required at
unity gain to make a closed-loop system unstable. The GM is the difference in
phase between the phase curve and -180 degrees at the point corresponding to the
frequency that gives us a gain of 0dB (the gain cross-over frequency).

The control performance quantifies, in essence, how fast the output y(t )
reaches the reference rr e f . The control performance can be tuned in the cost func-
tion for the control gains’ design using the state and input weights [86].
Settling time (ST): The settling time is defined as the time required for the output
y(t ) to reach and stay within a range of a certain percentage (usually 5% or 2%) of
the final (reference) value rr e f forever without external disturbances.

4.3 SPADE flow

We present the SPADE for IBC systems extending the approach presented in
Chapter 2 by considering pipelining along with parallelism and formalising the
IBC system modelling. An overview of our SPADE approach is illustrated in Fig. 4.3
(repeating Fig. 1.8, for readability), summarised below and explained in detail in
subsequent subsections.

1. Formal modelling of the IBC system: An IBC application is captured as an
IBC SADF model considering workload variations W and the platform as a
platform graph. Further, an implementation-aware IBC SADF model cap-
tures the given design parameters - camera frame arrival period fh , maxi-
mum number of allowed pipes p, total number of available cores navl

c and
allocated processing cores for parallel execution per pipe n//

c . The design pa-
rameters fully determine the implementation choice - non-pipelined with-
out parallelism, non-pipelined with parallelism, pipelined without paral-
lelism and pipelined with parallelism. The parallelism here refers to the
parallel execution of sensing subtasks limited by the degree of parallelism
of the IBC application. Graph transformations are proposed to obtain the
implementation-aware SADF model.

2. Analysis and design: We map the implementation-aware IBC graph for
each workload si ∈ W to the platform graph to obtain the binding-aware
graph G b

i for that specific workload using the SDF3 mapping flow [122]. G b
i

is a synchronous dataflow graph (SDFG) that models the mapping of the
implementation-aware graph to the platform graph. The mapping binds
each actor in the SDFG to a processing core in the platform graph. For
the ordering of execution of actors bound to the same core, a static-order
schedule is encoded in the SDFG. A throughput and latency analysis of
G b

i yields the sensor-to-actuator delay τi , and sampling period hi . For a
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Figure 4.3: Overview of our SPADE design flow (repeating Fig. 1.8, for readability). W is the
set of varying workloads and si , G b

i , τi , hi ,Ki and Fi are the workload, binding-
aware graph, sensor-to-actuator delay, sampling period, feedback gain and feed-
forward gain for a workload scenario si (determined by si ∈ W ); G b

s , τs , hs ,Ks
and Fs are the corresponding parameters for an identified system scenario ss
(that abstract multiple workload scenarios). fh is the camera frame arrival pe-
riod, fd is the inter-frame dependence time, p is the number of pipes for pipelin-
ing, n//

c is the number of cores allocated for parallelism per pipe, and navl
c is the

total number of available cores.

pipelined implementation, the throughput analysis of the worst-case image-
workload scenario allows to compute the inter-frame dependence time fd

(as explained later in Section 4.5.4). If fd > hi , the implementation-aware
graph is updated with the realisable period and τi and hi are recomputed.
The controllers are then designed for the resulting (τi , hi ) to obtain the con-
troller feedback and feedforward gains (Ki , Fi ). Trying to cater to the de-
signed workload scenarios at runtime means that we have a switching sys-
tem. A switching system with too many switching states is challenging for
controller stability and may result in poor performance. Hence, we aggre-
gate multiple workload scenarios with similar control timing parameters as a
system scenario. A system scenario ss abstracts multiple workload scenarios
and has a constant (τs , hs ) during implementation. A system configuration
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is defined as the combination of mapping and controller configurations, i.e.
G b

s , τs , hs , Ks , and Fs (as explained later in Section 4.3.2). Typically, there
are a few identified system scenarios, and the idea is that switching between
the system scenarios at runtime guarantees stability and improved perfor-
mance. For pipelined parallelism, a DSE using the SPADE flow needs to be
performed by varying the design parameters to identify the best implemen-
tation choice (parameters p,n//

c , further explained in Section 4.6.1).

3. Runtime implementation: The system configurations for the implementa-
tion choice are stored in a look-up table (LUT) in platform memory for the
runtime implementation. Dynamic runtime reconfiguration may be needed
since there can be a switching behaviour between system configurations due
to image-workload variations.

4.3.1 Formal modelling

An IBC application is captured as an IBC graph considering workload variations
and the platform as a platform graph. Further, an implementation-aware IBC
graph is created considering the design parameters (the number of pipes p, allo-
cated processing cores for parallel execution per pipe n//

c and camera frame arrival
period fh).

IBC graph and implementation-aware graph

The IBC and implementation-aware graphs are modelled using an SADF model.
Graph transformations to obtain an implementation-aware graph from the IBC
graph are different for the different implementation choices and, as such, are ex-
plained in later sections. We choose SADF [129] as the formal MOC for our appli-
cation as it enables us to: i) model dynamic behaviour and dependencies, analyse
timing, and optimally map application (sub)tasks to the platform for maximising
the effective utilisation of allocated resources; ii) relate latency and throughput
of the dataflow graph to the control timing parameters τ and h, and thus com-
bine dataflow analysis and mapping with control design parameters and QOC; iii)
analyse inter-frame dependencies (captured as inter-frame dependence time fd )
through graph transformations (as explained in Section 4.4); and iv) to efficiently
implement a runtime mechanism that manages necessary dynamic reconfigura-
tion.

An SADF model is a tuple (Σ, F ) of scenarios Σ and scenario sequences F ,
as already explained in Section 2.3.1. The SADF model for our example IBC sys-
tem is visualised in Fig. 4.4 (a). It is a variant of the model already used in Chap-
ter 2, with an explicit image-signal preprocessing step and shorter actor names.
The sensing and processing task receives the RAW camera image frames, which
are processed in a sequence of steps to extract the state information required for
the controller. The image-signal (pre-)processing (I) subtask converts the RAW
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image in the Bayer domain to pixels in the RGB domain. (Sub-)tasks translate
to actors in the dataflow graph, shown as circles in the figure. Data dependen-
cies between (sub-)tasks translate to channels, shown as arrows. After the image
processing, we detect the ROIS in the RGB image frames (D). ROI are processed
(P), and, subsequently, the controller state (the lateral deviation yL in our LKAS
case study) is computed by the ROI merging (M) subtask. The control algorithm
(C) then computes the controller input u[k] (steering angle δ f in our LKAS case
study) and feeds it to the actuation (A) task. The total number of ROI detected by
D determines the workload wi , i.e., wi = z in Fig. 4.4 (a). The workloads translate
to variable token production and consumption rates in the graphs.

Graph transformations are required to analyse the parallel and/or pipelined
implementations. This is, among others, because the typical mapping analysis
tools assume that one actor can be bound to only one processing core. Fig. 4.4 (b)
shows an implementation-aware graph for a non-pipelined parallelised imple-
mentation on two processors. It has two actor instances of the P subtask. The
workload wi = z1 + z2 in this case.

Each workload wi in an SADF is associated with an SDFG Gi . An SDFG in-
stance of Fig. 4.4 (b) is obtained by assigning values to parameters e j (the actor ex-
ecution times) and zk . E.g., assigning z1 = 3, z2 = 3, ei = 10, ed = 5, ep = 10, em =
3×(z1+z2) = 18, ec = 1, ea = 1 gives the SDFG for a workload of 6 ROI for mapping
to two processors. There is one (labelled) initial token t1 in the channel from actor

Figure 4.4: IBC SDFG: (a) graph structure. The rates z indicate the workload W . (b)
Implementation-aware graph for non-pipelined implementation on two cores
(given platform allocation). (c) A (simplified) binding-aware graph for non-
pipelined implementation on two cores for a workload of 6 ROI.
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A to I. This channel, with its single initial token, enforces a non-pipelined execu-
tion of the control loop. All actors in Fig. 4.4 (a) have repetition-vector entries of
1, except actor P , which as a repetition-vector entry z; and all actors in Fig. 4.4 (b)
have repetition-vector entries of 1, except the two P instances that have entries z1

and z2 respectively.

Fig. 4.4 does not show the language of allowed scenario sequences. In the LKAS
case, all possible workload sequences are allowed.

Platform graph

A platform, e.g. the COMPSOC MPSOC shown in Fig. 1.5, is modelled as a platform
graph that captures processing resources, and other relevant aspects such as mem-
ories and connections, with their processing and access latencies, data rates, etc.
The details needed for the model depend on the used mapping flow. For the sake
of explaining SPADE, we assume the platform is simply abstracted as a set of tiles.
A tile Ti abstracts a resource with the processor type pti that determines the exe-
cution time of actors bound to the tile. The COMPSOC instance shown in Fig. 1.5
has three tiles. Two of these tiles have a microblaze processor type. The third tile is
a memory tile that does not play a role in further explanations. Also, the connec-
tions are abstracted for the sake of simplicity. Hence, the platform is abstracted
as a 2-node platform graph without any connections. Note that the used SDF3
mapping flow does support the modelling of memories and connections, includ-
ing their timing, and takes these into account in the mapping optimisation.

A platform allocation determines the resources that are allocated to a task or
to an application. Resources that are allocated may include the number of tiles
or processors, or parts of processors (e.g. slots in a time-division multiplexing
(TDM) frame in COMPSOC), and types of processors, e.g. graphical processing
unit (GPU), ARM, and microblaze. For our running LKAS example, an allocation
consists only of the number of tiles of a specific processor type.

4.3.2 Analysis and design

We map the implementation-aware IBC graph for each workload wi ∈ W to the
platform graph to obtain the binding-aware graph G b

i (further explained below)

using the SDF3 mapping flow [122]. A throughput and latency analysis of G b
i yields

the control timing parameters τi and hi for the workload scenario si . Controllers
are designed for each workload scenario si using the computed timing parameters
(τi , hi ) to obtain the controller feedback and feedforward gains (Ki , Fi ). System-
scenario identification is then performed to identify the set of system scenarios
for runtime implementation. For a pipelined implementation, inter-frame depen-
dence time fd (as explained in Section 4.5.4) is also computed using the through-
put analysis.
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System mapping and mapping configurations

System mapping refers to the mapping of the IBC application (modelled as an
SADF) to the given platform (modelled as a platform graph). Note that for each
workload scenario si , we can have multiple mapping options for the given plat-
form allocation. The throughput and latency of each of these mapping options
would be different. The concrete problem is to find the mapping of si to the
given platform allocation that maximises throughput. Any design flow that does
the (Pareto-)optimal mapping of an application to a platform while maximising
throughput can be used.

We use the SDF3 mapping flow [123] as it optimises the resource usage, mem-
ory load and communication load for mappings (to the extent that these aspects
are considered in the models), and embeds state-of-the-art throughput analysis
techniques. Mapping an si (modelled as an SDFG Gi ) to a platform graph gen-
erates a binding-aware SDFG G b

i . G b
i is an SDFG that models the mapping of

the implementation-aware graph to the platform graph, where each actor in the
SDFG is bound to a tile in the platform graph. For the ordering of execution of
actors bound to the same tile, a static-order schedule is encoded in G b

i .
Fig. 4.4 (c) shows a simplified binding-aware graph for the 6-ROI workload

scenario of the running example, bound to two tiles. It encodes two static-order
schedules: IDP3MCA for one iteration of the graph on one core and P3 for one
graph iteration on the second core. Self-loops with a single token need to be added
to the two parallelised P actors to model the binding of the actor to a particular core
and to enforce sequential execution of the P firings on each of the two cores. This
suffices to encode the schedules. The graph is simplified in the sense that SDF3 en-
codes many more aspects in the binding-aware graph, such as memory accesses
and interprocessor communication.

A mapping configuration χm
si

refers to the binding of si to the platform and its
execution schedule represented in a binding-aware SDFG. The SPADE flow tries
to minimise the number of cores used even if a given number of cores is allocated.
This happens naturally when we map our SDFGs to the platform using the SDF3
tool, as SDF3 gives a Pareto-optimal mapping that minimises utilisation.

Timing analysis - computing fd ,τi and hi

The computation of inter-frame dependence time fd is specific for pipelined im-
plementation and is explained later in Section 4.5.4. In this subsection, we explain
how we compute the throughput and latency of the SADF and relate it to the con-
trol timing parameters τi and hi for a workload scenario si . Note that the state-
of-the-art SADF analysis uses (max, +) algebra [9] and the definitions needed for
the computation of throughput have already been explained in Chapter 2. In this
subsection, we summarise the relevant definitions for our analysis. For detailed
explanations, the reader is referred to [4].

A time-stamp vector γ0 captures the availability times the initial tokens. The
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production times of the final tokens resulting from the execution of a scenario
s are then γ1 = G sγ0, where G s is the scenario (or state) matrix of s. For the
binding-aware scenario SDFG corresponding to 6 ROI, introduced in Fig. 4.4 (c),
γ0 = [000]T . That is, the three initial tokens are all available at time 0. Scenario
matrix G s captures the dependencies and corresponding delays between the ini-
tial and final tokens. For the running example, G s equals

ei +ed +3ep +em +ec +ea em +ec +ea em +ec +ea

ei +ed +3ep 3ep −∞
ei +ed +3ep −∞ 3ep


Entry i j in this matrix contains the time delay from consuming token t j to

reproducing token ti in one iteration of the graph. The top left entry thus indicates
the delay to reproduce the final token t1 on the A-I channel. The two 3ep entries
show that the three firings of the two P actors are sequentialized. The two −∞
entries indicate that the two self-loop tokens of the two P actors, t2 and t3, are
independent. The other entries capture the delay from t1 to the self-loop tokens t2

and t3 and the delay from t1 to t2 and t3.
With the concrete actor execution times given earlier, this results in the follow-

ing concrete matrix:

65 50 50

45 30 −∞
45 −∞ 30


The production times after execution of scenario s are then obtained fromγ1 =

G s [000]T = [max(65,50,50)max(45,30,−∞)max(45,−∞,30)]T = [654545]T . Note
that the matrix multiplication in this analysis is the (max, +) matrix multiplication.
The analysis shows that the three tokens in the binding-aware graph of Fig. 4.4 (c)
are reproduced after 65, 45, and 45 time units, respectively.

The computation of token time-stamp vectors γk , output time-stamp vectors
pk , and throughput ν is explained in Section 2.3.1 in Eq. (2.8), Eq. (2.9), and Eq.
(2.10). For the LKAS scenarios, the output is produced by the actor A, meaning
that the output production time is equal to the production time of the token on
the channel from A to I. This means that the H s matrix for computing the output
time stamps is equal to [655050], corresponding to the first row of G s . The pro-
duction time of the first output p0 = [655050][000]T = [65]. The throughput ν of
this particular scenario is 1/65.

Latency is the maximum (worst-case) time taken to complete one iteration.
Given an initial state γ0, the latency of a scenario sequence s̄ relative to a period µ
is defined as

L (s̄,γ0,µ) = max
k≥0

pk −µk .
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For the infinite execution of the 6-ROI scenario SDFG of Fig. 4.4 (c), the latency,
relative to the period equalling the inverse of the throughput, is 65. We omit the
details of the computation, referring the reader to [4]. But the results should not be
surprising given the timing analysis of the scenario execution given earlier. Note
that the inverse of throughput and latency are equal in this case due to the model
with one initial token on the A-I channel that enforces the non-pipelined execution
of the SDFG. We exploit such modelling tricks in our model transformations for
mapping and pipelined implementation (as explained in later sections).

The sensor-to-actuator delay τi and the sampling period hi for the workload
scenario si that we need for controller design are computed from the binding-
aware graph G b

i that is obtained from mapping the implementation-aware graph
onto the allocated resources (as explained earlier and elaborated in Section 4.5).
The two values are computed as follows.

τi =L (sωi ,0,1/ν(G b
i )), hi = d τi

fh ×p
e fh , (4.2)

where 0 is the zero vector, fh is the camera frame arrival period, and p is the num-
ber of pipes in the pipelined parallelism implementation. The delay τi of scenario
si is the latency of executing that scenario repetitively after mapping it onto the
platform, with respect to the throughput obtained from that mapping and assum-
ing that initial tokens are available at time 0. For the computation of the effective
frame processing period hi , d τi

fh
e computes the number of frame periods within

the time-interval τi . By dividing by the number of pipes p, rounding up, and mul-
tiplying with the frame period fh , one obtains the effective sampling period for
the particular scenario implementation. For the infinite execution of the 6-ROI
scenario SDFG of Fig. 4.4 (c), assume fh = 1

60 s and p = 1. Then, τi = 65 ms, in
line with the earlier latency analysis, and hi = 66.7 ms. Further details on how the
SPADE flow uses τi and hi are provided in Section 4.5.

Controller design and control configurations

The LKAS case study we consider is a single-input single-output (SISO) system.
We discretize the IBC system model in Eq. 4.1 using (τi , hi ), computed for the
binding-aware SDFG G b

i for the workload scenario si . Let p be the number of
pipes used in the implementation (as reflected in the binding-aware graph), where
non-pipelined implementation corresponds to p = 1. We assume that u[−1] = 0

and define new system states z[k] =
[

x[k] u[k − (p −1)] · · · u[k −1]
]T

with

z[0] =
[

x[0] 0 · · · 0
]T

to obtain a higher-order augmented system as fol-

lows:

z[k +1] = Aaug ,si z[k]+Baug ,si u[k],

y[k] =Caug z[k]+Dc u[k], (4.3)
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where Aaug ,si , Baug ,si , and Caug are augmented system matrices. The computa-
tion of Aaug ,si , Baug ,si , and Caug varies for the non-pipelined and pipelined im-
plementation choices and as such is explained in the later sections. A check for
controllability [37] is done for the augmented system. If the system is not control-
lable, controllability decomposition is done to obtain a controllable subsystem.

We can then apply standard control-design techniques [37] for the augmented
system models in Eq. 4.3. We use a state-feedback controller u[k] of the following
form:

u[k] = Ki z[k]+Fi rr e f (4.4)

where Ki is the state-feedback gain and Fi is the feedforward gain both designed
for the workload scenario si . rr e f is the constant reference value for the controller.

We design the gains using the optimal linear quadratic regulator (LQR) [37].
Note that any other state-of-the-art control-design technique can also be used for
designing these gains. For each workload scenario si , we then define a control
configuration χc

si
as a tuple χc

si
= (hi ,τi ,Ki ,Fi ).

System-scenario identification, system configurations and stability

System-scenario identification is done to limit the number of switching scenarios
during runtime implementation. It is possible for multiple workload scenarios to
have the same sensor-to-actuator delay and/or sampling period due to implemen-
tation constraints like platform allocation and camera frame rate [86].

For the non-pipelined implementation, a system scenario ss abstracts multi-
ple workload scenarios si such that for hs = n × fh , for frame arrival period fh and
some n > 0, (hs − fh) < hi ≤ hs . That is, we aggregate workload scenarios based
on hs . Then, for the aggregated workload scenarios si , we choose τs to be the
maximum among the τi . G b

s , Ks and Fs are then re-designed for the (τs , hs ) iden-
tified for the system scenarios ss . We design G b

s by assigning τ = τs and h = hs

to the corresponding implementation-aware graph and verifying the existence of
a mapping that satisfies τs and hs . A control configuration χc

ss
= (hs ,τs ,Ks ,Fs ) is

then derived following the approach outlined earlier for workload scenarios. Only
system scenarios are then considered for defining the system configurations χs

ss
,

which is a combination of control configuration χc
ss

and mapping configuration

χm
ss

, i.e., χs
ss
= (G b

s , hs , τs , Ks , Fs ). The system-scenario identification for pipelined
implementation is explained in Section 4.5.4.

At runtime, the system scenarios switch based on the image-workload varia-
tions and/or platform load. This switching behaviour can lead to system instabil-
ity. Therefore, we must guarantee stability of the overall system while improving
QOC (already explained in Section 2.2.4).
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Figure 4.5: Challenges in pipelined implementation due to switching when hi is a multiple
of fh .

4.3.3 Runtime implementation

At design time, the system configurationsχs
ss

are stored in a LUT in platform mem-
ory. During runtime, for every arriving input image frame, we compute the work-
load wi (e.g. through the ROI detection task D) and choose the correct system
scenario ss associated with this workload from the LUT. System configuration χs

ss

of the corresponding system scenario ss is loaded from the LUT. Dynamic run-
time reconfiguration is typically needed since there can be a switching behaviour
between system configurations due to image-workload variations. For the non-
pipelined implementation and the pipelined implementation without resource
sharing between pipes, dynamic runtime reconfiguration means that, if needed,
a scheduler reconfigures the mapping G b

s , the time-triggering of the actuation task
(that determines τs ) and the controller gain parameters (Ks and Fs ) based on the
system scenario ss associated with the image workload from the LUT. The over-
head cost for this reconfiguration needs to be considered in the analysis model,
e.g., for the LKAS example, as an additional execution time cost in the actor D (see
Fig. 4.4).

Arbitrary switching and reconfiguration in the pipelined implementation are
challenging. Let p be the number of pipes, and hs be the periods per system sce-
nario. If we restrict hs to be a multiple of fh , the number of periods possible due
to arbitrary switching considering image-workload variations only grows linearly
with fh and p. However, if we do not restrict hs and allow it to take arbitrary val-
ues, the number of periods possible grows exponentially. E.g. assume that we have
three periods h1 (= fh for workload w1), h2 (= 2 fh for workload w2), and h3 (= 3 fh

for workload w3) due to image-workload variations. For simplicity, let us assume
that τs = hs and a given three-core platform allocation with three pipes. Consider
the case shown in Fig. 4.5 where the image frames k, k +1, . . . , k + i have workload
w3, w2, w1, w3, w1, w3, and so on. When multiple control computations com-
plete at the same time, e.g., just before frame k+3 is captured, the actuation should
be coordinated among the cores. Further, the controller for the image frame k +4
should ideally be designed using the discretized model considering h1 = fh if the
period is defined as the time between two consecutive starts of the sensing task.
However, it should also take into account that there was no actuation just before
this, i.e., the previous actuation was at the time t −2 fh . So, if the period was de-
fined as the time between two consecutive actuations, then the period for the con-
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troller for the frame at k +4 is 2 fh . A similar situation exists for frame k +5. Such
behaviours add to the complexity of the design space to be explored. The main
challenge, however, is proving the stability of the ensuing switched system with
these behaviours. Also, modelling these behaviours for the control design is far
from trivial.

For the scope of this work, we enforce a constant sampling period heff for the
overall pipelined implementation. A constant sampling period helps to limit the
design space to be explored and handle the dynamic reconfiguration with less run-
time overhead. As explained, the sensor-to-actuator delay τs is constant per iden-
tified system scenario ss . Consequently, two system scenarios s1 and s2 have the
control timing parameters (heff ,τ1) and (heff ,τ2).

A similar challenge exists for a pipelined implementation with resource sharing
between pipes, where reconfiguring the mapping dynamically is non-trivial. Re-
source sharing between pipes increases the design space to be explored for consid-
ering the possible reconfiguration options. For the scope of this work, dynamic re-
configuration for pipelined implementation with resource sharing between pipes
comprises a static mapping where actors are switched on and off considering im-
age workload variations, and choosing the controller gains dynamically from the
LUT by the control-computation task based on the system scenario considering
the latest state measurement available.

The SPADE flow is not restricted to the mentioned design and implementation
choices. Its key feature is that pipelining and parallellism are integrally considered.
As we will see, this provides benefits in the achievable QoC. Other controller design
and implementation choices can be integrated as long as appropriate timing ana-
lysis and stability guarantees can be provided.

4.4 Model transformations

This section explains the model transformations required for modelling, analysing,
and mapping the IBC system using SADF. The model transformations are re-
quired to obtain the implementation-aware IBC graph from the IBC graph for
the given design parameters, as illustrated in Fig. 4.3. Our model transfor-
mations consist of maximising parallelism, creating a pipe, replicating pipes
to implement pipelining, introducing camera-awareness, introducing workload-
awareness, modelling inter-frame dependencies, and re-timing of actor execution
times. For each workload scenario, we assume that the sensing and processing task
is modelled as an SDFG GS , the control computation task is modelled as an SDFG
GC , and the actuation task is modelled as an SDFG GA . The graphs GS , GC , and
GA should have identifiable source and sink actors asr c,i and asnk,i , i ∈ {S,C , A}. A
source is an actor without any incoming edges and a sink is an actor without any
outgoing edges. We moreover enforce that ρ(asr c,i ) = ρ(asnk,i ) = 1. Having identi-
fiable source and sink actors with repetition-vector entries equal one ensures well-
formedness for our model transformations. Note that an SDFG with a single actor
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satisfies the assumptions. The source and sink actors should be identical across all
workload SDFGs in an application IBC SADF.

To maximize opportunities to speed up the computations in the control loop,
we want to maximize parallelism in graphs GS , GC , and GA . Automatically ex-
tracting task- and data parallelism in computations is challenging. So, in gen-
eral, it is up to the designer to maximize parallelism in the three mentioned
graphs. But given an SDFG of a workload scenario, it is possible to maximize data
parallelism by transforming the SDFG to a homogeneous synchronous dataflow
graph (HSDFG) [73, 121]. Essentially, this transformation replicates actors with
a repetition-vector entry greater than one into multiple actors (as many as the
repetition-vector entry of the actor for the SDFG) with each a repetition-vector
entry one in the HSDFG. A platform-aware mapping such as implemented in the
SDF3 tool [123] then clusters actors of the HSDFG per processor in the given plat-
form allocation for maximising throughput. A disadvantage of this approach, how-
ever, is the scalability of the mapping and performance analysis that depends on
the number of actors.

Another option is to replicate the parallelisable actors as many times as mean-
ingful given the platform allocation. That is, we transform an SDFG G via a trans-
formation Rep A(G ,ϕ) that preserves the number and timing of firings in a single
iteration of the original graph G in the transformed graph, where ϕ is the repli-
cation vector with size equal to the number of actors in G and where each ele-
ment ϕ(a) represents the number of times an actor a needs to be replicated. A
straightforward replication vector can then be defined using the repetition vector
ρ and the maximum number of processing cores allocated for parallel execution
of tasks per pipe n//

c , as ϕ(a) = mi n(ρ(a),n//
c ), a ∈ A . Often, this transformation

is relatively straightforward, but a definition that works in general is not obvious.
The challenge when replicating actors is to accurately model the transformations
of channels, production and consumption rates, and initial tokens such that the
functional and timing behaviour of the original graph is preserved. Fig. 4.6 gives
some example transformations, including Gantt charts that illustrate that actor fir-
ings and their timing are preserved. We leave a generic definition (and the proof
that such a transformation exists in general and preserves functionality and tim-
ing) as future work. Note that the SDFG-to-HSDFG transformation of [73, 121] is
an instance of Rep A when the replication vector is chosen equal to the repetition
vector.

For the remainder, assume that GS , GC , and GA are the graphs obtained after
maximizing parallelism. The Create pipe Pi pe(GS ,GC ,GA) transformation creates
a model for a single pipe by adding a delay actor and channels between the sinks
and sources of GS and GC , GC and GA , GA and delay, and delay and GS . The exe-
cution time of the delay actor is set to zero, and one initial token is added to the
channel between the delay actor and the source of GS to enforce sequential imple-
mentation of the pipe (see Fig. 4.7). The latency of the resulting SDFG can be con-
figured by an appropriate choice of the execution time of the delay actor (which
can be set using the re-timing transformation given in Def. 6). The model transfor-
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(a) G1 (b) G2

(c) Rep A(G1, [1 2 2 1]) (d) Rep A(G2, [1 2 1])

(e) Gantt chart for 4.6(a) and 4.6(c) (f) Gantt chart for 4.6(b) and 4.6(d)

Figure 4.6: Examples of the replicate actors Rep A transformation. The Gantt charts cover
one iteration of the corresponding graph and assume actor execution times to
be 1. Subscripts resulting from Rep A transformations are omitted for brevity.

mation results in an SDFG whose latency is equal to the inverse of the throughput.

Definition 1. (Create pipe Pi pe(GS ,GC ,GA)) Transformation Pi pe(GS ,GC ,GA)
creates a single pipe and sequentialises the graph execution (by restricting pipelin-
ing). Pi pe(GS ,GC ,GA) = (A ′, C ′, e ′, r ′

p , r ′
c , i ′) with

A ′ =AS ∪ AC ∪ AA ∪ {delay},

C ′ =CS ∪ CC ∪ CA ∪ {c1 = (asnk,S , asr c,C ), c2 = (asnk,C , asr c,A),

c3 = (asnk,A ,delay), c4 = (delay, asr c,S )},

e ′ = eS ∪ eC ∪ e A ∪ {(delay,0))},

r ′
p = rpS ∪ rpC ∪ rp A ∪ {(c1,1), (c2,1), (c3,1), (c4,1)},

r ′
c = rcS ∪ rcC ∪ rcA ∪ {(c1,1), (c2,1), (c3,1), (c4,1)},

i ′ = iS ∪ iC ∪ i A ∪ {(c1,0), (c2,0), (c3,0), (c4,1)}.

The Pi pe transformation is essential to compute sensor-to-actuator delay τ
for our implementations. To compute τi for a workload scenario si : i) compute
Pi pe(Rep A(GSi ,ϕSi ),Rep A(GCi ,ϕCi ),Rep A(GAi ,ϕAi )); ii) map the transformed
graph to the given platform allocation to obtain the binding-aware graph G b

i ; and

iii) compute the latency of G b
i . This latency value is equal to τi .

The replicate-pipe transformation is an intermediate step in the model trans-
formation, where we replicate the entire pipe to enable pipelining (see Fig. 4.7,
RepP (g1,2)). Since each actor can be mapped to only one processing core, imple-
menting pipelining on multiple processing cores is challenging without replication
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of a single pipe. RepP (G ,d) facilitate the modelling for a pipelined implementa-
tion with d pipes. Recall that a pipe is created from GS , GC and GA (see Defini-
tion 1). These subgraphs in a single pipe are all replicated d times by the replicate-
pipe transformation. The RepP transformation does not use the specifics of the
graph it is applied to. It generically replicates the entire SDFG the specified num-
ber of times.

Definition 2. (Replicate pipe RepP (G ,d)) Let G = (A , C , e, rp , rc , i ) be an SDFG.
Transformation RepP (G ,d) replicates the SDFG d times resulting in RepP (G ,d) =
(A ′, C ′, e ′, r ′

p , r ′
c , i ′) with

A ′ = ⋃
a∈A

{a j | 1 ≤ j ≤ d}1,

e ′ = {(a j ,e(a)) | a ∈A , 1 ≤ j ≤ d},

C ′ = ⋃
c∈C

{c j | 1 ≤ j ≤ d},

i ′ = {(c j , i (c)) | c ∈C , 1 ≤ j ≤ d},

r ′
p = {(c j ,rp (c)) | c ∈C , 1 ≤ j ≤ d},

r ′
c = {(c j ,rc (c)) | c ∈C , 1 ≤ j ≤ d}.

The three following transformations - adding camera-awareness, workload-
awareness and inter-frame dependencies - assume that the replicate-pipe trans-
formation has been performed with replication factor d on a single pipe created
with transformation Pi pe, optionally preceded by replicate-actor transformations
(which do not affect these transformations).

The Camera-awareness transformation is an intermediate step in our model
transformations. It adds a camera actor with execution time equal to the inverse
of the given camera frame rate (the frame arrival period fh), a self-edge with an
initial token to model the frame arrival, and channels from the camera actor to
the d replicated source actors asr c,S j with the channel consumption rate equal
to the number of replications d (see Fig. 4.7, C am(g2,2)). The number of initial
tokens in these channels are set to enforce an ordering of the pipes in the pipelined
implementation.

Definition 3. (Camera-awareness C am(G ,d)) Let G = (A , C , e, rp , rc , i )
be the SDFG RepP (Pi pe(GS ,GC ,GA), d). Transformation C am(G ,d) =

1This union replicates every actor in the original graph d times. For every actor a in A , we create
a1, . . . , ad actors in the new graph.
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Figure 4.7: Illustration of model transformations.

(A ′, C ′, e ′, r ′
p , r ′

c , i ′) enforces a camera frame rate, with

A ′ =A ∪ {camera}, e ′ = e ∪ {(camera, fh)},

C ′ =C ∪ {(camera)2} ∪
{c j = (camera, asr c,S j ) | 1 ≤ j ≤ d},

r ′
p = rp ∪ {((camera)2,1)} ∪ {(c j ,1) | 1 ≤ j ≤ d},

r ′
c = rc ∪ {((camera)2,1)} ∪ {(c j ,d) | 1 ≤ j ≤ d},

i ′ = i ∪ {((camera)2,1)}∪ {(c j ,d − j +1) | 1 ≤ j ≤ d}.

The Workload-awareness transformation is a step in the model transforma-
tions performed on graph C am(RepP (Pi pe(GS ,GC ,GA),d),d). Due to image-
workload variations, the sensing task’s runtime execution times are varying. Also,
for the SPADE implementation, the system scenarios may abstract multiple work-
load scenarios with varying execution times for the sensing task. However, the
SPADE controller design requires a constant sensor-to-actuator delay per system
scenario for the implementation. The W l d transformation enforces a constant
sensor-to-actuator delay for our implementation. The W l d transformation adds
actors T j with an incoming channel from the camera actor and an outgoing chan-
nel to the (replicated) source actor asr c,C j of the computation SDFG GC . The
consumption rate and initial tokens for the channels from camera actor to T j

are the same as for the channel from camera actor to source actors in the C am
transformation, again to enforce ordering in the pipelined execution (see Fig. 4.7,
W l d(g3,2)). The T j actors create a path in parallel to the GS graph instances. By
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setting the execution time of these added T j actors to an appropriately large value,
a constant sensor-to-actuator delay can be enforced. The W l d transformation sets
the execution time to 0. The execution-time value can be updated when needed in
the SPADE flow by the re-timing transformation introduced below.

Definition 4. (Workload-awareness W l d(G ,d)) Let G = (A , C , e, rp , rc , i ) be the
SDFG C am(RepP ( Pi pe(GS ,GC ,GA),d),d). Transformation W ld(G ) = (A ′, C ′,
e ′, r ′

p , r ′
c , i ′), with

A ′ =A ∪ {T j | 1 ≤ j ≤ d},

e ′ = e ∪ {(T j ,0) | 1 ≤ j ≤ d},

C ′ =C ∪ {cT j = (camera,T j ) | 1 ≤ j ≤ d} ∪
{TC j = (T j , asr c,C j ) | 1 ≤ j ≤ d},

r ′
p = rp ∪ {(cT j ,1) | 1 ≤ j ≤ d} ∪

{(TC j ,1) | 1 ≤ j ≤ d},

r ′
c = rc ∪ {(cT j ,d) | 1 ≤ j ≤ d} ∪

{(TC j ,1) | 1 ≤ j ≤ d},

i ′ = i ∪ {(cT j ,d − j +1) | 1 ≤ j ≤ d} ∪
{(TC j ,0) | 1 ≤ j ≤ d}.

The inter-frame-dependency transformation adds channels to enforce the de-
pendencies for actor firings between two consecutive pipes. E.g., an actor b j that
executes in the k-th pipe might depend on the completion of execution of an actor
ai that executes in the (k −1)-th pipe. This transformation is optionally done after
C am (and has no further effect on the definition of the earlier transformations).
An example for this transformation is illustrated in Fig. 4.8. Ideally, our model
transformations ensure that the inverse throughput of the implementation-aware
graph is equal to the execution time of the camera actor. E.g. if e(camera) = fh ,
then the throughput of the implementation-aware graph is equal to (or limited
by) the camera frame rate 1

fh
. Now, the ifd transformation allows the throughput

to be limited also by the inter-frame dependencies. The inverse throughput of the
implementation-aware graph will then be equal to the maximum of e(camera) and
the inter-frame dependence time fd (as explained later in Section 4.5.4).

Definition 5. (Inter-frame dependency ifd(G , a,b,d)) Let G = (A , C , e, rp , rc , i )
be the SDFG C am(RepP ( Pi pe(GS ,GC ,GA),d),d). Transformation ifd(G , a,b,d) =
(A , C ′, e, r ′

p , r ′
c , i ′) adds inter-frame dependencies between actors ai and b j , for

ai ,b j ∈A , with

C ′ =C ∪ {cd = (ad ,b1)} ∪ {c j = (a j ,b j+1) | 1 ≤ j < d},

r ′
p = rp ∪ {(cd ,ρ(b1))} ∪ {(c j ,ρ(b j+1)) | 1 ≤ j < d},

r ′
c = rc ∪ {(cd ,ρ(ad ))} ∪ {(c j ,ρ(a j )) | 1 ≤ j < d},

i ′ = i ∪ {(cd ,ρ(ad )))} ∪ {(c j ,0) | 1 ≤ j < d}.
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Figure 4.8: Illustration of inter-frame dependencies between the actors I and M. The chan-
nels added by ifd(g5, I , M ,2) are shown in red.

During SPADE analysis, the τ and h values are updated based on our imple-
mentation choices. The re-timing transformation helps to update the execution
time of the actors (camera, delay, and T) in our models when required (see Fig. 4.7,
ReT (g4, a,e2)).

Definition 6. (Re-timing ReT (G , a, t )) Let G = (A , C , e, rp , rc , i ) be an SDFG.
Transformation ReT (G , a, t ) = (A , C , e ′, rp , rc , i ) updates the execution time of
actor a ∈A to t ∈R≥0, with

e ′ = e \ {(a,e(a))}∪ {(a, t )}.

4.5 The SPADE flow revisited

This section makes the SPADE design flow (illustrated in Fig. 4.3 and introduced
in Section 4.3) precise in the form of Algorithm 2, using the model transforma-
tions of Section 4.4. The model transformations are primarily used to construct
implementation-aware graphs for workload and system scenarios. The integrated
transformation from an IBC graph to an implementation-aware graph is captured
in Algorithm 1. Due to platform resource constraints (the total number of avail-
able cores navl

c ), design choices (number of pipes p, number of cores allocated
per pipe n//

c ), application characteristics, inter-frame dependencies (inter-frame
dependence time fd ) and the possible camera frame-arrival period ( fh), the ef-
fective implementation can be: i) a non-pipelined implementation without par-
allelised sensing; ii) a non-pipelined implementation with parallelised sensing;
iii) a pipelined implementation without parallelised sensing; and iv) a pipelined
parallelism implementation. Section 4.5.1 explains Algorithm 1 for constructing
implementation-aware graphs. Section 4.5.2 elaborates SPADE in Algorithm 2. We
then explain the refinements for non-pipelined and pipelined implementations in
Sections 4.5.3 and 4.5.4. The differentiation between non-pipelined and pipelined
implementation is mainly needed for control design and switching. Further, we
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also explain the challenge due to inter-frame dependencies in a pipelined imple-
mentation in Section 4.5.4.

Algorithm 1: impAwGrTrans(G ,τ,h,eC A , p)

input : G , τ, h, eC A , p, IFD (the set of known inter-frame dependencies)
output: Implementation-aware graph GI

1 G1 = ReT (G ,delay,(p ×h −τ));
2 G3 =C am(RepP (G1, p), p);
3 G31 = ReT (G3,camera,h)
4 if p > 1, i.e. pipelining is allowed then
5 foreach (a,b) ∈ IFD do
6 G31 = ifd(G31, a,b, p);
7 end
8 end
9 G4 =W l d(G31, p);

10 GI = ReT (G4,T j , (τ−eC A)), 1 ≤ j ≤ p;

4.5.1 Implementation-aware graph transformation

In this section, we explain the steps needed to obtain the implementation-aware
graph of a workload or system scenario and formalise those in Algorithm 1. The
input SDFG is the SDFG of a single parallelised pipe of a single scenario, obtained
after applying the Pi pe transformation (as explained in Section 4.4), as illustrated
in Fig. 4.7. The other inputs to the algorithm are the delay τ, period h, the total
execution time of the control compute and actuation tasks eC A , and the number
of pipes p. Also, we assume that if there exist inter-frame dependencies, they are
known as a subset of actors IFD, IFD ⊆ A 2. An ordered pair of actors (a,b) ∈ IFD
models the inter-frame dependency between the actors a and b. The output of the
algorithm is the implementation-aware graph GI .

Step 1 ensures that we can achieve a constant sensor-to-actuator delay dur-
ing mapping by assigning the execution time of the delay actor as p ×h −τ in G

to obtain G1. The delay actor fills up the time between when the actuation task
(modelled by actor A) finishes its execution until the completion of one pipe (see
Fig. 4.7). This ensures that each parallelised pipe, when mapped to the platform,
can periodically execute with the period p ×h and has a constant delay of τ. If we
have p pipes, we can ensure that the effective control sampling period is h. Step 2
replicates the single parallelised pipe model G1 p times to model the pipelined
execution and then adds camera-awareness to the graph G1 as explained in Sec-
tion 4.4. Step 3 updates the execution time of the camera actor in line with the
sampling period h. Our model has to execute with the period h even though the
camera frame arrival period is fh . h, however, is a multiple of fh so that we can
align the arrival of camera frames with the sampling period.
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If pipelining is allowed, i.e., if p > 1, and there exist inter-frame dependencies
that are known as ordered pairs of actors IFD, the ifd transformation, explained in
Section 4.4 and in Fig. 4.8, is applied for each of the dependencies (see Step 4 and
the for loop in Step 5). Step 9 adds workload-awareness to the resulting graph G3,
also explained in Section 4.4. The W l d transformation adds the actors T j whose
execution times should be equal to the sensor-to-actuator delay minus the exe-
cution times of the control compute and actuate tasks eC A (an input to the algo-
rithm). We obtain the final refined implementation-aware graph GI after updating
the execution time of actors T j in Step 10 with e(T j ) = τ− eC A so that we can en-
sure that the control compute task starts at the right time and is not affected by the
workload variations in sensing.

4.5.2 Unified SPADE flow for pipelined parallelism

The SPADE flow of Fig. 4.3 is made precise in Algorithm 2. Algorithm 2 captures
the design-time formal modelling, analysis and design for the SPADE flow. The
outputs of the design flow are the system configurations and the LUT for runtime
implementation. Runtime implementation for SPADE has been explained earlier
in Section 4.3.3. The inputs to the SPADE flow are the camera frame rate fh , the
number of pipes p, the number of cores for parallelism per pipe n//

c , the applica-
tion IBC SADF (Σ,F ) (satisfying the assumptions given in Section 4.4), and the
total (maximum) number of available cores navl

c . ‘Map G ’ denotes the mapping
of the SDFG graph G to the given platform allocation, as mentioned in Step 2. In
our implementation, the mapping is done using the SDF3 [123] tool. But any map-
ping tool can be used that ensures a mapping onto the platform that guarantees
the maximal throughput obtainable by the SADF being mapped.

We explain the steps in Algorithm 2 in relation to Fig. 4.3. The ‘for loop’ in
Step 3 derives, for each workload scenario si , the initial implementation-aware
IBC graph G11i (Steps 4,5), mapping of the control compute and actuation tasks
to obtain G b

C Ai
(Step 6), mapping of the initial implementation-aware graph G11i

to obtain the binding-aware graph G b
11i

(Step 7), and timing analysis for comput-
ing τi and hi (Steps 8, 9). If pipelining is enabled, we refine the implementation-
aware graph using the timing analysis information and the implementation choice
p (Step 11) to compute the inter-frame dependence time for the scenario f i

d (Step
14). The ‘for loop’ in Step 3 is illustrated in Fig. 4.3 from the implementation-aware
IBC graph node to the timing analysis block and back. The model transforma-
tions required to compute the implementation-aware graphs have already been
illustrated in Fig. 4.7 and Fig. 4.8 and the transformation of Step 11 has been made
precise in Algorithm 1.

Steps 4 and 5 create a model of a single parallelised pipe G11i , as explained
in Section 4.4. The parallelisation transformations are optional. As explained in
Section 4.4, the parallelisation may also be done manually. Step 6 maps the con-
trol compute and actuate tasks to the given platform allocation to compute its ex-
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Algorithm 2: SPADEFlow( fh , p, n//
c , (Σ,F ), navl

c )

input : fh , p, n//
c , (Σ,F ) ( SADF), navl

c (platform)
output: System configurations χs

ss
, LUT

1 Begin
2 Let ‘Map G ’ denote the mapping of an SDFG G to the given navl

c cores
using the SDF3 tool;

3 foreach workload scenario si ∈Σ do
4 ϕXi = mi n(ρXi ,n//

c ), where Xi ∈ {Si ,Ci , Ai } and ρXi is the repetition
vector of Xi ;

5 G11i = Pi pe(Rep A(GSi ,ϕSi ),Rep A(GCi ,ϕCi ), Rep A(GAi ,ϕAi ));

6 G b
C Ai

← Map Pi pe(Rep A(GCi ,ϕCi ),Rep A(GAi ,ϕAi ));

7 G b
11i

← Map G11i ;

8 τi =L (sωi ,0, 1
ν(G b

11i
)
);

9 hi = d τi
fh×p e fh ;

10 if p > 1, i.e. pipelining is allowed then
11 GIi = impAwGrTrans(G11i ,τi ,hi , 1

ν(G b
C Ai

)
, p);

12 G32i = ReT (GIi ,camera,0);

13 G b
32i

← Map G32i ;

14 f i
d = 1

ν(G b
32i

)
;

15 end
16 end
17 if p > 1, i.e. pipelining is allowed then
18 τwc = max

i
τi ; hwc = max

i
hi ;

19 fd = max
i

f i
d ;

20 ns = max
(⌈ fd

fh

⌉
,1

)
;

21 n fwc = d τwc
fh

e;

22 pmax = ⌈ n fwc
ns

⌉
;

23 ncmax = n//
c ×pmax ;

24 hmi n =
 ns × fh , if navl

c ≥ ncmax ,⌈
ncmax

navl
c

ns

⌉
× fh , otherwise;

25 heff = max(hmi n ,hwc );
26 end
27 Controller design and system-scenario identification:

if p>1, see Sections 4.5.4 and 4.5.4;
else see Sections 4.5.3 and 4.3.2;
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28 ss ← identified system scenarios with (τs ,hs );
29 τswc = max

s
τs ; hswc = max

s
hs ;

30 sswc = argmax
ss

τs ;

31 ps = d τswc
hswc

e ;

32 foreach identified system scenario ss with (τs ,hs ) do
33 G11s ←G11i of the si in ss with max τi ;

34 G b
C As

←G b
C Ai

of the si in ss with max τi ;

35 GIs = impAwGrTrans(G11s ,τs ,hs , 1
ν(G b

C As
)
, ps );

36 G b
s ← Map GIs ;

37 if hs = 1
ν(G b

s )
then

38 χs
ss
= (G b

s ,hs ,τs ,Ks ,Fs );
39 else
40 // the mapping of ss is not feasible

go to Step 27 and choose a different (sub)set of system
scenarios (possibly reverting to the worst-case scenario sswc as
the single system scenario);

41 Create a LUT for runtime use (as explained in Section 4.3.3);
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ecution time eC A . If the control compute and actuate tasks are single actors C
and A respectively, then eC A = eC + e A . However, if the control compute and ac-
tuate tasks are parallelised (sub)graphs GC and GA , we need to find the latency
from the combined binding-aware graph after the Rep A and Pi pe transforma-
tions (Step 6). In this case, the latency is equal to the inverse throughput due to the
Pi pe transformation, i.e., eC A = 1/ν(G b

C Ai
). Step 7 maps initial implementation-

aware graph G11i to the given platform allocation to obtain the binding-aware
graph G b

11i
. Steps 8 and 9 compute the sensor-to-actuator delay τi and sampling

period hi for si from this binding-aware graph (as explained earlier in Eq. 4.2).

If pipelining is allowed, i.e., p > 1, then we go through an extra iteration of the
timing-analysis loop (in Fig. 4.3) to compute the inter-frame dependence time for
the scenario at hand, f i

d , for the pipelined implementation (Steps 10 - 14). Step 11
refines the initial implementation-aware graph for the scenario at hand with delay-
awareness, pipe replication, camera-awareness, and workload-awareness through
Algorithm 1 with the timing values computed in the previous steps. In order to
compute the inter-frame dependence time, we then set the execution time of the
camera actor to zero (Step 12) so that the inter-frame dependency is the through-
put limiting factor in our graph. We map the refined graph G32i to obtain G b

32i
and

compute f i
d as the inverse throughput of G b

32i
(Step 14). A point to note is that

the actors camera, delay j and T j being added in the process are not mapped to
the given platform allocation (while mapping in SDF3, we bind each of these ac-
tors to separate dummy processors). These actors are required to simulate time-
triggering of tasks and ordering of pipes.

In Steps 17 - 25, we proceed with the timing analysis in Fig. 4.3 to compute the
inter-frame dependence time fd for the IBC application as a whole and the con-
stant effective sampling period heff for a pipelined implementation (i.e. p > 1). Re-
call from Section 4.3.3 that we enforce a constant sampling period for the pipelined
implementation to limit the design space to be explored, reduce runtime over-
head, and facilitate controller design. The computation of heff starts with deter-
mining the worst-case delay τwc , worst-case period hwc , and corresponding inter-
frame dependence time fd . We can then compute the maximum number of pipes
feasible pmax due to inter-frame dependencies and the maximum number of cores
we require ncmax to realise pmax . We can then compute the smallest realisable sam-
pling period hmi n , after which we set heff to the maximum of hmi n and hwc .

Step 18 determines the worst-case delay τwc and worst-case period hwc . Be-
cause delay and sampling period are determined from a single pipe, the scenario
with the largest delay also has the largest sampling period. Next, we compute the
maximum inter-frame dependence time fd (Step 19) over all the workload scenar-
ios si . The maximum (and not any other) inter-frame dependence time is consid-
ered for further analysis since the order of the workload scenario sequence at run-
time is not known apriori. Because of inter-frame dependencies, not all frames can
be used for sensing. With ns as computed from fd and fh as indicated in Step 20,
ns −1 is the effective number of frames skipped between processing the arriving
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camera frames due to the inter-frame dependencies. The maximum operation
is required to avoid a corner case in the subsequent analysis when fd = 0. n fwc

(Step 21) is the number of camera frames arriving within any worst-case sensor-
to-actuator delay interval for the single pipe execution. The realisable maximal
number of pipes pmax captures the maximum number of pipes possible for our
pipelined implementation considering the frames we have to skip due to inter-
frame dependencies and the total number of frames arriving within the worst-case
delay interval n fwc (see Step 22). We can then compute the maximum number of
cores required for realising our design choices of n//

c and pmax during runtime im-
plementation as ncmax (Step 23). For instance, if we allocate two cores per pipe
for parallelism and we would like to have two pipes, then we need a maximum
of four cores. hmi n is then the minimum realisable sampling period possible for
the controller implementation considering the given choice of parameters; it can
be computed as shown in Step 24. If more cores are allocated than the maximum
number of cores required to realise our design choices, i.e., navl

c ≥ ncmax , then hmi n

is limited only by the inter-frame dependencies, as captured by ns . In this case, the
SPADE implementation utilises a maximum of ncmax cores, as having more cores
does not improve hmi n and, in effect, does not improve the control performance.
However, if the resources we require to realise a sampling period of ns × fh are not
allocated, i.e., navl

c < ncmax , then hmi n has to be increased proportionally to the
fraction

ncmax

navl
c

. E.g., let ncmax = 4, ns = 1. If navl
c ≥ 4, we can achieve the sampling

period hmi n = fh . However, if navl
c = 2, we cannot realise hmi n = fh . In this case, we

increase hmi n as many times as the fraction 4
2 , i.e., hmi n becomes 4

2 ns × fh = 2 fh .
The effective realisable sampling period heff is finally taken as the maximum of
hmi n and hwc (Step 25).

Steps 27 - 40 design controllers for the workload scenarios, identify the system
scenarios ss , derive the binding-aware graph G b

s for ss , check feasibility of the sce-
nario definitions, and define the system configurations. These steps are illustrated
in Fig. 4.3 using the blocks controller design, system-scenario identification, and
system configurations. For a non-pipelined implementation, controllers are de-
signed as explained in Section 4.5.3 and the system-scenario identification is done
as explained in Section 4.3.2. For a pipelined or pipelined-parallelism implemen-
tation, controller design and system-scenario identification are explained in Sec-
tions 4.5.4 and 4.5.4, respectively. Recall that if we cannot guarantee the stability
of the switched system being defined, our controller design reverts to a periodic
worst-case-based design with a single worst-case system scenario. Step 30 identi-
fies this worst-case system scenario sswc as the scenario with the largest delay τswc

(and hence also the largest period). If any of the identified system scenarios can-
not be mapped onto the allocated resources in such a way that all timing require-
ments are met, then SPADE reverts to this worst-case scenario as the only system
scenario as well (Step 40). Step 31 computes the realisable number of pipes, i.e.
the effective number of pipes in implementation, based on the worst-case timing
analysis, controller design and scenario identification. ps is always less than or
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equal to p.
For each of the identified system scenarios, Steps 33 - 36 derive its binding-

aware graph. We start from the initial implementation-aware graph of the con-
tributing workload scenario with the maximum delay (Step 33). Then we identify
the contributing workload scenario’s binding-aware graph for the control com-
pute and actuation tasks (Step 34). Step 35 refines the initial implementation-
aware graph with the updated timing information on delay τs , period hs , execu-
tion time for the control compute and actuate tasks (eC As = 1/ν(G b

C As
) and the

realisable number of pipes ps using Algorithm 1. Finally, we map the updated
implementation-aware graph to the platform (see Step 36) and check if the con-
trol timing is realisable in the binding-aware graph (Step 37). Control timing is
realisable if a feasible mapping exists for the binding-aware graph, and a feasible
mapping implies that the inverse throughput of the G b

s is equal to hs . If a feasible
mapping exists, we can define the system configuration χs

ss
(Step 38) for the sys-

tem scenario ss . If the mapping is infeasible, we need to choose a different subset
of system scenarios and re-do the controller design as explained earlier ( Step 40).

Once the feasible system scenarios have successfully been identified, we cre-
ate the LUT in Step 41, as explained in Section 4.3.3. A DSE (illustrated in Fig. 4.3)
is performed if we want to explore which implementation choice gives the best
control performance. In this paper, we consider a brute-force DSE by varying the
inputs to Algorithm 2, and analysing the performance of the resulting system con-
figurations.

4.5.3 SPADE control design and switching for non-pipelined im-
plementation

This section explains the controller design, in particular, system augmentation and
switching, for non-pipelined implementation (p = 1). Recall from Section 4.3.2
that we aggregate workload scenarios based on the camera frame rate to limit the
number of switching scenarios. Controllers are designed for the aggregated work-
load scenarios and system scenarios are identified as the switching-stable aggre-
gated workload scenarios as explained in Section 4.3.2.

The control timing parameters τi and hi for any scenario si are computed dur-
ing the SPADE analysis and design (see Steps 8 and 9 of Algorithm 2). The con-
troller design for the non-pipelined implementation has already been explained
in Section 2.2.2.

Switching due to workload variations and switching stability have been ex-
plained in Section 4.3.2. Having numerous switching scenarios often results in
instability [125] and degrades control performance due to the non-smooth re-
sponse associated with the switching overhead. For optimising control perfor-
mance and stability, it is essential that we limit the number of switching scenar-
ios through system-scenario identification (as explained in Section 4.3.2). For a
non-pipelined implementation, switching results in both variable delay and vari-
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able period. SPADE flow for the non-pipelined implementation does not have any
restrictions on the value of τs we can have for a system scenario. hs can vary, but
should always be a multiple of fh to align the start of the sensing task with the
camera frame rate.

4.5.4 SPADE refinements for pipelined implementation

For a pipelined implementation, i.e., for p > 1, we have that τwc > heff where τwc

is the worst-case sensor-to-actuator delay, and 0 < τi ≤ τwc . For the scope of this
work, we enforce a constant sampling period heff (which is a multiple of fh) for
the overall pipelined implementation. The constant sampling period means that
we ensure a constant start of sensing and also, a constant actuation rate. The
computation of heff depends on the inter-frame dependencies, τwc , fh , p, n//

c ,

and navl
c (see Algorithm 2 for the precise details). This section explains the sig-

nificance of inter-frame dependencies, switching due to image workload varia-
tions in pipelining, controller design, system-scenario identification, the need for
implementation-aware matrices and how we compute control configuration for
pipelined implementation.

Figure 4.9: Illustration of inter-frame dependencies with fh < fd ≤ 2 fh . (Adapted from
Fig. 3.6, for readability.)

Inter-frame dependencies in a pipelined implementation

Pipelining is inherently limited by inter-frame dependencies, i.e., the data or al-
gorithmic dependencies between consecutive frame processing, e.g., due to video
coding [77] or visual tracking [120]. Considering inter-frame dependencies is cru-
cial for a practical pipelined implementation. Inter-frame dependence time (de-
noted by fd ) can be quantified for the current image frame as the maximum time
required to complete the processing of (parts of) the IBC algorithm the subse-
quent image frame processing depends on. Alternatively, fd is the minimum time
required to wait between the start of processing consecutive image frames. Fig. 4.9
illustrates the impact of inter-frame dependence time on sampling period h. In
a pipelined implementation, considering inter-frame dependencies means that
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Figure 4.10: Illustration of switching due to workload variations in a multiprocessor
pipelined implementation. (a) Logical delay diagram (adapted from Fig. 3.7) il-
lustrating the cases explained in Sec 4.5.4 and (b) its corresponding Gantt chart
(adapted from Fig. 3.3). The sample k + 4 has a lower workload and thus the
latest output measurement y(k +4) is available within one fh .

strictly heff ≥ fd . The number of frames that has to be skipped after processing ev-
ery frame is ns −1 with ns computed as in Step 20 of Algorithm 2. This is illustrated
in Fig. 4.9 where ns = 2 and one frame is skipped after every frame processing.

The computation of fd is explained in Algorithm 2. The inter-frame depen-
dencies are modelled using the ifd model transformation explained in Section 4.4.
Computing fd helps to determine the effective image arrival period or the min-
imum possible sampling period hmi n we can have. Inter-frame dependencies
mean that sometimes image frames have to be skipped for processing with respect
to the given image arrival period fh and the sampling period h. Skipping a frame
means that h increases and thus degrades the control performance. In some cases,
e.g., when the sensing uses video coding, inter-frame dependencies limit the effec-
tive camera frame rate and the video needs to be encoded/decoded at the effective
rate (1/heff ). In case the video encoding is closed-source and the video encoding
cannot be done at a new rate, then sufficient resources need to be allocated first for
decoding at the original camera frame rate and only the remaining resources can
be utilised for the rest of the application. In this case, the video decoding is peri-
odically executed at the camera frame rate and mapped first to the given platform
allocation. The IBC application is then mapped to the remaining allocation.

For a non-pipelined implementation, the inter-frame dependencies can be ig-
nored since the frames are processed in sequence.
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Figure 4.11: Illustration of the challenge with varying actuation rates ai due to variable τ′i .

Switching in pipelined implementation

Switching in a multiprocessor pipelined IBC system implementation due to work-
load variations has not been explicitly explored in literature apart from our previ-
ous work explained in Chapter 3. When we do not consider workload variations,
a pipelined implementation effectively results in a constant τ and h. Considering
workload variations implies that we would have varying sensing delays, e.g. as il-
lustrated in Fig. 4.10. Here, notice that the camera input frame at k+4 has a sensing
delay of one frame (τ1 = h) due to lower image workload, and all other frames have
a sensing delay of three frames (τ = 3h). This scenario results in multiple sensing
and image processing (S) tasks completing their execution at the same time. This
means that multiple output measurements y[k +2], and y[k +4] are available for
control computation task C at the same time instance. For the scope of this work,
the sampling period is kept constant and the switching happens due to variable
delay.

Notice that by having just one frame with a lower workload, we can have the
following three switching cases as illustrated in Fig. 4.10 (a): case 1) the new mea-
surement is available with the same sensing delay as in the previous step; case 2)
the sensing delay is increased compared to the previous step as the latest mea-
surement is not available. Older past measurements may be available during this
time (e.g. y[k +3] becomes available one period after y[k +4]). However, they are
used only to update the state estimates and not directly for control input compu-
tation; case 3) the sensing delay is reduced by one or more steps: when multiple
pipes finish processing a corresponding sequence of frames, both the latest mea-
surement(s) along with the past measurements are now available. The past mea-
surements are used to update the state estimates, and the latest measurement is
used to compute the control input.

Thus, the main challenge for the pipelined IBC system design in order to max-
imise performance, i.e. QOC, is to effectively use the sensor measurements as early
as possible for control computation without any unnecessary idling and to esti-
mate the system state when there are no sensor measurements available. Mod-
elling this behaviour is far from trivial. This problem was explored with respect to
long network delays in [79]. We leverage these results in our design.
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Control design and system-scenario identification

We consider a pipelined implementation with workload scenarios si having
(τi , hi ) as timing parameters. It is possible to have a varying hi similar to the non-
pipelined implementation. However, proving stability guarantees then becomes
challenging and as such is not explored in this work. For the scope of this work, we
assume a constant period heff for all scenarios in the pipelined implementation.
How we compute heff was explained earlier in Algorithm 2. For brevity, h = heff in
the rest of this section.

For a workload scenario si , we can represent τi based on [100] as

τi = (n fi −1)h +τ′i , where 0 < τ′i ≤ h, n fi =
⌈τi

h

⌉
. (4.5)

This representation divides the delay τi into n fi regions in the time domain. This
results in (n fi −1) regions of h and the left-over delay τ′i for τi . n fi is the number of
frames arriving in one delay period for the scenario at hand. The above n fi compu-
tation assumes the practical situation where τi > 0. In case one wants to consider

τi = 0, n fi = max
(⌈

τi
h

⌉
,1

)
.

Next, we enforce a constant actuation rate since a varying actuation rate results
in undesired behaviour as illustrated in Fig. 4.11, even in the case of a pipelined
implementation with a constant sampling period. Fig. 4.11 executes a scenario
sequence (s3s2s1s3s1s3)ω with sampling period heff = fh . The scenario s1 has the
best-case delay τ1 = fh , s2 has a delay τ2 = 1.2 fh , and s3 has a delay τ3 = 2.5 fh . If we
now apply Eq. 4.5, we get a varying τ′i and the Gantt chart as illustrated in Fig. 4.11.
Notice that the actuation rates illustrated by the ai are not periodic anymore and
we have ordering issues as well with respect to the actuation task. Further, guaran-
teeing controller stability for this case is challenging.

We mitigate varying actuation rates by defining τ′ = max
i

(τ′i ) and then design-

ing controllers with τi = (n fi − 1)h +τ′ and h = heff for workload scenarios si . A
constant τ′ over all scenarios is required to maintain a constant actuation rate be-
tween switching scenarios in a pipelined implementation. Notice that by defining
and fixing τ′ we are aggregating workload scenarios with the same n fi (see Eq. 4.5).
The controllers are designed for these aggregated workload scenarios. Also, the
design space for system-scenario identification is narrowed down by the workload
scenario aggregation.

To design the controllers, Eq. 4.1 can then be reformulated as follows [100]:

x[k +1] = Asi x[k]+B ′
0,si

u[k − (n fi −1)] (4.6)

+B ′
1,si

u[k −n fi ],

where Asi , B ′
0,si

and B ′
1,si

are given by replacing τi by τ′ and hi by h in Eq. 2.3. It

is interesting to note that the matrices Asi , B ′
0,si

and B ′
1,si

are identical for all the
scenarios due to this formulation. However, Eq. 4.6 is still different for different
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aggregated scenarios due to varying n fi . We leverage the identical matrices dur-
ing the runtime implementation as we only have to store a few key matrices as
explained in Section 4.5.4.

Next, we define new augmented system states z ′[k] =[
x[k] u[k − (n fi −1)] · · · u[k −2] u[k −1]

]T
to obtain a higher-order

augmented system as follows:

z ′[k +1] = A′
si

z ′[k]+B ′
si

u[k], y[k] =C ′z ′[k]+Dc u[k],

A′
si
=



Asi B ′
1,si

B ′
0,si

· · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

0 0 0 · · · 0


, B ′

si
=



0

0
...

0

I


,

C ′ =
[

Cc 0 0 · · · 0
]

. (4.7)

Controllers are then designed for this higher-order augmented system, as ex-
plained in Section 4.3.2. The stability criterion for the switched pipelined imple-
mentation is similar to the problem for long network delays [28, 79] and as such is
not explained here.

For the pipelined implementation, we identify system scenarios using the fol-
lowing steps, where the first two steps are done as part of the controller design:
i) classify the workload scenarios si with the same n fi = d τi

h e into a maximum of
d τwc

fh
e aggregated workload scenarios; ii) for each aggregated workload scenario,

design a controller with τi = (n fi −1)h +τ′ and h = heff ; iii) check for control sta-
bility for the switched system with the identified aggregated workload scenarios.
If the switched system is unstable, find an aggregation of workload scenarios for
which the switched system is stable through an exhaustive search. If multiple sce-
nario sets provide a stable system, we choose the set with the highest cardinality
and shortest average sensor-to-actuator delay; iv) the identified aggregated work-
load scenarios that result in a stable switched system are the system scenarios ss

with τs = (n fs −1)h +τ′ and h = heff .

Implementation-aware control matrices and control configurations

When we allow switching for pipelined implementation, the challenge is the vary-
ing dimensions of matrices in Eq. 4.7 for varying delays due to workload varia-
tions. The varying dimensions affect the runtime computation of u[k] (see Eq. 4.4),
where the matrix Ki needs to be multiplied with z[k] at every time-step. This chal-
lenge also occurs when some of the system states are estimated and not directly
obtained from sensor measurements. For the LKAS, only the third state is com-
puted from the sensor and the other states are estimated using the system model



4

108 SPADE by pipelined parallelism

(see Eq. 4.3). In this case, z[k +1] (see Eq. 4.3) needs to be computed at every time
step.

We tackle the challenge of varying dimensions of matrices by unify-
ing/normalising the dimensions of matrices considering the worst-case delay τwc

over all system scenarios ss . The matrices for the worst-case delay scenario swc

annotated with (h,τwc ) are the same as in Eq. 4.7. Let n be the order of the square
matrix Aswc and n fwc = d τwc

h e. For each system scenario ss , with τs > h, n fs = d τs
h e,

the system matrices are given below. For brevity, let n fwc = n f and n is the order of
matrix Ass . It is interesting to note that Ass = Aswc when the period h is constant
for the system scenarios ss . The order of the square matrix A′

ss
is (n +n f ).

A′
ss
=



Ass 0(n f −1)×n 01×n

0n×(n f −n fs )

B ′
1,ss

0(n f −1)×1 01×1

B ′
0,ss

0n×(n fs −2) I(n f −1)×(n f −1) 01×(n f −1)



T

,

B ′
ss
=

[
0(n+n f −1)×1 I1×1

]T
, C ′ =

[
Cc 01×n f

]
.

Further, in a pipelined implementation due to workload variations we could
have a scenario ss with τs ≤ h (see for instance iteration [k + 4] in Fig. 4.10). We
derive the matrices for such scenarios as follows. Also, since τs ≤ h, n fs = 1.

A′
ss
=

 Ass 0n×(n f −n fs ) B ′
1,ss

0(n f −1)×n 0(n f −1)×1 I(n f −1)×(n f −1)

01×n 01×1 01×(n f −1)

 ,

B ′
ss
=

[
B ′

0,ss
0(n f −1)×1 I1×1

]T
,

C ′ =
[

Cc 01×n f

]
.

The matrices Ass , B ′
0,ss

and B ′
1,ss

are obtained for scenario ss as explained
in Eq. 4.7. We can apply standard control design techniques for these
implementation-aware system models. State-feedback and feed-forward con-
trollers can be designed as shown in Eq. 4.4 for the system scenarios to obtain Ks

and Fs . The control configurations are then χc
ss
= (heff ,τs ,Ks ,Fs ).

Note that when storing matrices for a pipelined implementation, we only need
to store Ks and Fs for each scenario ss , Aswc , B ′

0,ss
, B ′

1,ss
, and Cc for the constant

period h and τ′. We only need to store one Aswc , B ′
0,ss

, B ′
1,ss

, and Cc matrix as the
period and actuation rate are constant.
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Figure 4.12: Pareto-plot for simulation - QOC vs given platform allocation, i.e., navl
c . Here,

we consider the SADF in Fig. 4.4 (a) with z = 6 (worst-case workload). The
MSE and ST are normalised with respect to the maximum (worst-case) value.
The legend denotes < navl

c , n//
c , p >. Higher GM and phase margin (PM), and

lower MSE and ST are better.

4.6 Experimental results and discussion

This section explores the SPADE experimental results with a focus on DSE. The
DSE is used for identifying the degrees of parallelism and pipelining for the
pipelined parallelism implementation. A DSE is required since the parallelisation
is limited by the degree of application parallelism quantified using n//

c and navl
c ,

and the maximum number of active pipes we can have is limited by fd , fh , n//
c and

navl
c . After exploring the DSE results for the running example, we discuss a few ob-

servations for the SPADE flow and compare the state-of-the-art methods with our
proposed SPADE flow for pipelined parallelism. The simulations in this section
consider the LKAS case study introduced in Section 1.7. The LKAS is modelled
using the IBC graph given in Fig. 4.4 (a) with the worst-case workload scenario
having z = 6 and the execution times of the actors as explained in Section 4.3.1.
The platform we consider is the predictable COMPSOC platform (as explained in
Section 1.3.1) with navl

c as an input to the SPADE flow.

4.6.1 Design-space exploration (DSE)

The SPADE flow has been explored till now with a fixed number of pipes p and a
fixed number of cores per pipe for parallelism n//

c . A DSE with design parameters
fh , p, n//

c , navl
c is needed to identify the Pareto-optimal implementation choice,

i.e., the degree of pipelining and the degree of parallelism. Note that p quantifies
the degree of pipelining, and n//

c quantifies the degree of application parallelism
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for an implementation choice. Typically, fh and navl
c are given or fixed. We only

vary these two parameters if the goal is to identify the optimal frame rate or min-
imise resource usage.

We use a brute force method to identify the possible implementation choices
< navl

c , n//
c , p > over the design space. For each implementation choice, i.e., with

fixed design parameters, we compute its GM and PM (see Section 4.2.2) for the
worst-case system scenario sswc (see Step 30 in Algorithm 2). GM and PM are an-
alytical metrics and can be computed easily from the discretized control system
model in Eq. 4.3 for sswc . We suggest using GM and PM to prune the design space
to be explored for multiple implementation choices, as the MSE and ST QOC met-
rics that we ultimately want to optimise are simulation-based and obtaining them
is compute-intensive. A performance comparison for different implementation
choices using MSE and ST is moreover unfair unless we can do exhaustive simula-
tion considering different initial conditions and environments (e.g., weather con-
ditions, as illustrated in our previous work [36]).

Thus, the Pareto-optimal implementation choice for a given platform alloca-
tion navl

c is chosen as the one with the highest GM and PM. If GM and PM are in-
comparable for multiple implementation choices for a platform allocation, in the
sense that one implementation choice has a higher GM and the other one a higher
PM, then we consider both these choices as part of the Pareto front. The Pareto-
optimal implementation choices are further analysed using MSE and ST. To do
so, controllers are designed for the Pareto-optimal implementation choices, and
optimal system scenarios considering workload variations are identified based on
control performance metrics MSE and ST.

As a proof-of-concept, we performed DSE with fh = 1
60 and given (maximum)

platform allocation of six processing cores, i.e., navl
c = 6, considering the IBC graph

in Fig. 4.4 (a). The QOC over various design points is illustrated in Fig. 4.12. For the
purpose of validation, we explored more implementation choices through simula-
tion than only the Pareto-optimal ones as described above. The results show that
the implementation choices with higher gain and phase margins indeed have bet-
ter control performance (MSE and ST) in the simulations, confirming that GM and
PM can be used to prune the design space. The only anomaly is the normalised ST
for the case < 2,2,1 > for two cores which is better than the ST for the configura-
tions with a higher number of cores. We observe that this is due to our simula-
tions proceeding at the rate of the sampling period. E.g., the sampling period for
both the cases < 2,2,1 > and < 3,3,1 > is the same (0.0667 ms), but their sensor-to-
actuator delays are 0.065 ms and 0.055 ms, respectively. When we proceed with the
simulations at the rate of the sampling period, the slight differences in the settling
time are due to approximations in the model fitting.

In terms of optimising QOC for the running LKAS example, an important
first observation from the DSE results is that all configurations that exploit par-
allelism and/or pipelining improve QOC over the fully sequential implementation
< 1,1,1 >. Our simulations moreover show that, typically, for the optimal QOC,
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we should parallelise as much as possible (increasing n//
c ) and then pipeline (in-

creasing p). For example, in Fig. 4.12, let us consider the cases of navl
c = 3 and

navl
c = 6. Among the configurations with navl

c = 3, we notice that the configura-
tion < 3,3,1 > has the highest GM and PM and the best control performance. The
normalised MSE is similar for both < 3,3,1 > and < 3,1,3 >. There is a visible
improvement in the normalised ST for the first of these two configurations that
maximises parallelism compared to the second that maximises pipelining. Simi-
larly, when navl

c = 6, we notice that configuration < 6,6,1 > has the highest GM
and PM and best normalised settling time. The normalised MSE is similar to the
cases < 6,3,2 > and < 6,2,3 >. We observe that this is due to having the same sam-
pling period for all these cases. The trend that parallelisation should be prioritised
over pipelining is true for other platform allocations.

Let us now consider the cases of navl
c = 4 and navl

c = 5. It is interesting to notice
that the control performance for both these cases is identical, and the performance
does not improve by allocating one more core when navl

c = 4. This is due to identi-
cal control timing parameters, delay and period, when navl

c = 4 and navl
c = 5. It is

also interesting to note that the fully parallelisable implementations < 4,4,1 > and
< 5,5,1 > do not have the best performance for both these cases. This is because of
identical delay (= 55 ms) and period (= 66.7 ms) when n//

c = navl
c and p = 1, for the

cases with navl
c = 3,4,5. This happens because when we distribute six ROIS over 3,

4 or 5 cores, there are always two sequential ROI executions needed on (at least)
one core, meaning that the effective delay does not change. This means that we
already have a fully parallelisable implementation with navl

c = 3. When we have
a fully parallelisable implementation and still have more cores available, we can
pipeline. E.g., the cases with the best performance for navl

c = 4,5 are < 4,2,2 > and
< 5,2,2 >. These cases have delay and period equal to 65 ms and 33.3 ms, respec-
tively. We observe that considering parallelism and pipelining integrally has better
performance than considering only one of the two options.

The main conclusion of the DSE is that we should parallelise as much as pos-
sible and then pipeline while taking into account the delay and period. It is im-
portant to note that increasing the number of available cores does not necessarily
improve the control performance. This is due to several factors. The most promi-
nent factors, the camera frame rate and the inter-frame dependencies, have been
discussed earlier. Our results also show the significance of GM and PM in prun-
ing the design space for exploration. A higher GM and PM typically imply a better
control performance (MSE and ST). The GM and PM are computed analytically,
whereas the MSE and ST can only be computed through simulations. For SPADE,
we use this knowledge to prune the design space.

4.6.2 Is higher frame rate always better?

Our observation with respect to the frame rate is that having a higher frame rate is
not always better. Having a higher frame rate means processing the arriving frames
at a higher rate, which is compute-intensive, and may not always improve the con-
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trol performance (as shown in Fig. 4.13). We observe that the control performance
is similar for 60 fps and 120 fps for all the cases. The control performance is the
worst for 30 fps when we have only one available processing core. A slight degra-
dation in control performance is noticed for 30 fps when considering 2-5 avail-
able processing cores. If we have six available processing cores, all the frame rates
have similar performance. The control performance is dependent mainly on the
τs and hs of the system scenarios. If improving the frame rate does not effectively
decrease the average delay and/or period, it becomes an overhead to do so and
wastes compute resources in the given platform.
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Figure 4.13: navl
c vs settling time (in s) considering different frame rates for the SADF in

Fig. 4.4 (a) with z = 6 (workload) and p = 1.

4.6.3 Impact of inter-frame dependencies

In a pipelined implementation, the inter-frame dependencies have a significant
impact on the maximum number of pipes we can realise ps (see Step 31 of Algo-
rithm 2). The impact of the inter-frame dependence time fd on ps is illustrated
in Fig. 4.14 using an example. In this example, we allocate sufficiently many cores
navl

c = 12 since ncmax = 12 (see Step 23 in Algorithm 2) for a camera frame rate of
120 fps, considering a worst-case delay of τwc = 95 ms, and n//

c = 1.
If fd = 0, the maximum number of realisable pipes we can have when the cam-

era frame rates are 30, 60 or 120 fps are 3, 6 or 12, respectively. E.g., if the camera
frame rate is 120 fps, then we can have a maximum of dτwc / fhe = d0.095×120e = 12
pipes. Note that, as fd increases, the number of realisable pipes reduces exponen-
tially. E.g., if fh < fd ≤ 2 fh , then the number of frames to skip after processing each
camera frame is one. Now for the camera frame of 120 fps, skipping one frame af-
ter every frame processing means that the realisable number of pipes will become
6 (see the interval fd = (0.0083,0.01667] in Fig. 4.14). A higher fd implies a smaller
number of realisable pipes. Also, as fd increases beyond a certain point, pipelin-
ing is no longer feasible (when ps = 1). E.g., in Fig. 4.14, ps = 1 in the intervals
fd = (0.067,0.100] for 30 fps, fd = (0.083,0.100] for 60 fps, and fd = (0.092,0.100]
for 120 fps.
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Figure 4.14: Impact of fd on maximum number of realisable pipes ps . In this example, we
consider τwc = 95 ms, n//

c = 1 and navl
c = 12.

4.6.4 Impact of system-scenario switching on control perfor-
mance

It is possible for switching to degrade the control performance compared to the pe-
riodic worst-case-based design (presented in Fig. 4.12). However, we choose sys-
tem scenarios such that the control performance improves even if we have switch-
ing at runtime. Further, we discard the combinations of aggregated workload sce-
narios that degrade control performance compared to the single worst-case work-
load scenario swc during system-scenario identification (see Section 4.3.2). We
illustrate this observation using Fig. 4.15 where we consider the SADF in Fig. 4.4
having three system scenarios s1, s2 and swc with 1, 3 and 6 ROI respectively. s1 is
the best-case workload scenario with the smallest delay and swc is the worst-case
scenario with the worst-case delay. Notice that, in all switching cases, the control
performance settles faster than the periodic worst-case based design (denoted by
(swc )ω in Fig. 4.15). The trend is similar for different camera frame rates as well. We
observe that the control performance is better if the frequently occurring workload
scenario is closer to the best case than the worst case. E.g., in Fig. 4.15, the scenario
sequence (s10

1 swc )ω has s1 as the frequently occurring scenario, which leads to a
better performance than (s10

2 swc )ω with s2 as the most frequently occurring sce-
nario. Further, we observe that the control performance of the scenario sequences
cluster towards the performance of its most frequently occurring scenario, as is ob-
served in Fig. 4.15 with distinct colour regions (where the blue and green scenarios
form one cluster).

4.6.5 Comparison with the state-of-the-art

The DSE, as explained in Section 4.6.1 and illustrated in Fig. 4.12, already shows
quantitatively that integrally considering the combination of parallelism and
pipelining in multiprocessor IBC design outperforms the state-of-the-art ap-
proaches in which only one of the two options is considered. The integral consid-
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Figure 4.15: Impact of system scenarios switching due to workload variations on yL with
navl

c = 1. Note that the legends mention representative scenario sequences; the
plot contains more scenario sequences than the ones mentioned in the legends.
The markers denote the frame rate and colours denote the scenario sequences.

eration of parallelism and pipelining differentiates SPADE from any earlier work,
as explained in Section 1.4. In this subsection, we compare the proposed SPADE

method qualitatively on several other relevant criteria with state-of-the-art multi-
processor IBC design techniques in Table 4.1. For brevity, we only compare with
multiprocessor IBC system implementations and not with traditional sequential
control design techniques based on the worst-case sensing delay, as it has already
been shown in Chapter 2 and [46] that multiprocessor implementations are ben-
eficial for optimising control performance. The multiprocessor implementations
can be classified into pipelined [69], [112] with constant delay, pipelined with vari-
able delay [82] and pipelined with workload scenarios (Chapter 3), and sequential
implementation with parallelisable sensing that is explained in Chapter 2. The
camera frame rate, however, is not explicitly considered in [69].

The proposed approach is advantageous to other multiprocessor IBC system
implementations with respect to: 1) coverage of the design space considering both
pipelining and parallelisation; 2) considering inter-frame dependencies and re-
source sharing among pipes; and 3) not imposing any restrictions on τ, thereby
enabling shorter τ and h compared to other approaches.

4.7 SPADE adaptation for an industrial platform

We have explained the SPADE flow until now assuming that the timing of the im-
plementation is predictable. However, for an industrial platform, it is difficult to
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Table 4.1: Comparing the proposed SPADE approach with the state-of-the-art multiproces-
sor IBC system implementations

Criteria SPADE approach
Pipelined

Chapter 2
[69], [112], [82] Chapter 3

Inter-frame depen-
dencies

explicitly considered not considered considered independent

System non-
linearities

control-design dependent not considered explicitly consid-
ered

not considered in
Chapter 2; control-
design dependent

Constraints on vari-
ables

control-design dependent cannot be imposed can be strictly
imposed

not considered in
Chapter 2; control-
design dependent

Control computa-
tion time

low low - medium high low

Runtime overhead
due to reconfigura-
tion

explicitly considered as a
time cost in the SADF
model

not considered [69]
[112]; not explicitly
considered [82]

explicitly consid-
ered

explicitly consid-
ered

Algorithm white/gray/black box white/gray/black
box

white/gray/black
box

white/gray box

Parallelisation
potential

explicitly taken into ac-
count

independent independent should be high

Workload varia-
tions

explicitly considered in de-
sign

not consid-
ered [69] [112];
indirectly consid-
ered [82]

explicitly consid-
ered in design

explicitly consid-
ered

Platform can be adapted for all suitable for homo-
geneous [69] [112];
can be adapted for
all [82]

suitable for ho-
mogeneous

directly applicable
for all

Resource sharing
between pipes

explicitly considered dur-
ing mapping

not considered not considered not applicable

Restrictions on
sampling period h1

strictly periodic for
pipelined, h < τwc ;
switched for non-
pipelined;

strictly periodic;
h < τwc

strictly periodic;
h < τwc

switching possible

Restrictions on
sensor-to-actuator
delay τ

none strictly τwc > h;
in [112], τ is strictly
a multiple of h

strictly2 τwc > h τwc ≤ h

τwc : worst-case delay; 1 If camera frame arrival period fh is considered, always h is a multiple of fh ; 2 if τwc ≤ h design reverts to non-pipelined.

predict the timing analytically (as users have restricted freedom in scheduling due
to caching, resource sharing, etc.), and any computed timing is pessimistic. This
section shows how we can apply the SPADE flow even when it is difficult to give
tight predictable timing guarantees. As in Chapter 2, the idea is that we use the
frequently occurring task execution times instead of the pessimistic worst-case ex-
ecution time (WCET) estimates to obtain temporal bounds.

Chapter 2 explored this idea for a non-pipelined parallelisable implementa-
tion. In this chapter, we show that the SPADE adaptation for an industrial platform
is relevant for pipelined parallelism as well. The assumption for implementation is
that it is possible to time-trigger tasks either through polling or through interrupt
timers in the industrial platform. We provide validation through a HIL simulation,
showing that we can guarantee control stability for the SPADE design outcomes,
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Figure 4.16: HiL setting overview with NVIDIA AGX Xavier.

despite the fact that the execution-time estimates for tasks used in the SPADE flow
are not conservative.

4.7.1 HIL setting for our case study

Fig. 4.16 illustrates our HIL validation setup for LKAS adapted from [87]. It simu-
lates a vehicle with a top look-ahead camera using the Webots [84] physics simula-
tor engine and interacts with an NVIDIA AGX Xavier platform using the transmis-
sion control protocol/internet protocol (TCP/IP) protocol. The simulator works in
a server-client configuration. Webots acts as the server while the NVIDIA platform
acts as the client. The server (Webots) progresses simulation in full synchronisa-
tion with the client (NVIDIA AGX Xavier) [47]. At each simulation step, the camera
sensor simulated in Webots generates a raw image containing state information
x[k], that is fed to the NVIDIA platform. It executes the sensing (S) and control (C )
tasks to generate control input u[k], which is communicated back to Webots for
actuation. After actuation, the simulation progresses to the next step.

For our evaluation, the camera sensor in Webots is modelled based on the
AR1335 complementary metal–oxide semiconductor (CMOS) digital image sen-
sor [6] and is set to a resolution of 720p2. The camera frame rate is varied between
30 fps, 60 fps, and 120 fps, depending on the sampling period of the controller. The
actuation dynamics are modelled based on [107]. A lane width of 3.25 m is con-
sidered, as per standard road-safety guidelines. The vehicle is initially positioned
with a fixed bias of 15 cm from the lane centre to test the control performance. The
Webots simulation step is set to 1 ms, while the vehicle speed is set to 50 km/hr.

4.7.2 Platform graph

We proceed to explain the abstraction we make for the platform graph in Fig. 4.3.
The NVIDIA AGX Xavier platform has a Carmel central processing unit (CPU) com-
plex with eight cores and a Volta GPU with 512 CUDA cores and 64 Tensor cores,
as shown in Fig. 1.7. Modelling all the GPU cores separately may lead to state-
space explosion and is inefficient for the dataflow timing and mapping analysis.
Also, the proprietary GPU scheduler is closed-source and needs to be accessed

2State-of-the-art lane detection algorithms [98] operate on low-resolution images. So, we perform
our evaluation using downscaled (512×256) sensor images. Our approach is also effective for high-res
images.
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through the CPU. The execution times are difficult to predict for the tasks mapped
to the GPU when there are other shared tasks on the GPU. Therefore, we abstract
and combine the execution times of the tasks mapped to the GPU along with the
execution time of the CPU task that accesses it. Thus, the platform allocation is
defined based on the total number of CPU cores available navl

c . For the NVIDIA
AGX Xavier platform, we have a maximum of eight CPU cores, i.e., navl

c = 8.

4.7.3 IBC graph

Next, we explain the IBC graph of Fig. 4.3 used in this experiment and how we pop-
ulate it with the profiling information. We model the IBC sensing algorithm using
the IBC graph illustrated in Fig. 4.17. This graph structure is for the approximate
setting ‘S3’ of the IBC system presented later in Chapter 6. The execution time
numbers for the actors in the graph and the rates in the channels are obtained by
mapping and profiling the IBC application on the NVIDIA AGX Xavier platform.
We perform a model-fitting using the profiled timing information to update the
execution time of the actors for each workload scenario. The resulting IBC SADF
model is then one of the inputs to the SPADE flow explained in Algorithm 2.

For profiling, around 100 images are identified with varying image workloads.
We execute each stage in the LKAS 100 times for every image in the dataset to re-
duce sensitivity to access locality. This helps to characterise the profiling informa-
tion as a PERT distribution [1] for the latency of an iteration of the graph. Workload
scenarios are classified based on the resulting PERT distribution by identifying re-
gions in the distribution based on occurrence frequency. This results in scenario
graphs with the same graph structure and channel rates, but different actor exe-
cution times. The workload scenarios for this setup are not based on ROI, as in
our running example. For the worst-case scenario, we use the worst-case profiling
numbers for the execution times of the actors. Other workload scenarios use the
best-case, first quartile, median and third quartile profiling data. As an example,
the model parameters for the workload scenario using third quartile profiling data
are edm = 10.3 ms, edn = 4 ms, e1 = 0.3 ms, e2 = 4.65 ms, ed = 5 ms, ep = 1.4 ms,
em = 0.16 ms (see Fig. 4.17), eC = 0.016 ms, and e A = 0.5 ms (assuming single actors
Cand Afor the control compute and actuation tasks). Workload scenarios may also
be classified based on other parameters, like ROI in the running example. Our pre-
vious work [91] details the case where the workload scenarios are classified based
on different operating modes of an application due to environmental conditions.
Here, we use the observed overall latency of the sensing, because it is difficult to
predict execution times on the considered platform based on other parameters.

4.7.4 SPADE flow, DSE and HIL validation

Once we have the IBC SADF model with the profiling information for every work-
load scenario, the rest of the steps in the SPADE flow follows Algorithm 2. A DSE
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Figure 4.17: LKAS IBC graph of the sensing algorithm implementation derived from [35].
The actors are: dem - demosaicing; den - denoising; i1,2,3 - abstract colour map-
ping and white balancing, tone mapping, and compression; and D-P-M model
the lane detection, processing and merging tasks. The output is the lateral de-
viation yL .

is performed for different implementation choices n//
c and p (as explained in Sec-

tion 4.6.1). A DSE involves analytical computation of GM and PM (in Matlab)
for the different implementation choices (results are shown in Fig. 4.18). We con-
sider three given platform allocations - single-core, four cores and eight cores,
i.e., navl

c = 1,4,8. The implementation choices with the highest GM and PM are
Pareto-optimal.

The results in Fig. 4.18 show that parallelising as much as possible gives the
best result, i.e. the configurations < 4,4,1 > and < 8,8,1 > have the best GM and
PM. The configurations < 4,4,2 > and < 8,4,2 > have similar GM and PM and can
be considered for further analysis. The results confirm the earlier conclusion of
Section 4.6.1 that parallelisation should be prioritised over pipelining. In this case,
pipelining does not have any added value (p = 1 in both Pareto-optimal configura-
tions), because the LKAS implementation is highly parallelisable. For applications
with a lower degree of parallelism, e.g., when maximum parallelism is achieved
with 4 cores and navl

c = 8, this would likely not be the case. In such a case, we can
use the additional four cores for an additional pipe, implying that configuration
< 8,4,2 > would have been ideal.

Next, we validate the Pareto-optimal implementation choices in the HIL set-
ting of Section 4.7.1 for control stability, considering both parallelism and pipelin-
ing together. Recall that the SPADE flow has a built-in stability check for the system
configurations considering the initial system model. However, the actual LKAS
implementation has to cater to different environment conditions, noise levels, and
model uncertainties. HIL validation is often used to simulate the designed system
configurations under real-life environment conditions. Therefore, we also perform
a HIL validation experiment. From the experiment, we observe that stability of the
implementation choices of the closed-loop system is confirmed. We can moreover
verify that the order of the control system performance obtained in HIL conforms
to the GM and PM predictions. As explained, we rely on analytical metrics GM
and PM to select our design points. The MSE and ST comparisons are omitted
as performing an exhaustive, fair simulation for even a single design point is too
compute intensive. But the DSE performed with the SPADE flow and the HIL val-
idation of the results show that SPADE can be adopted for industrial platforms.
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Figure 4.18: Pareto-plot for GM and PM vs navl
c . The legend denotes < navl

c , n//
c , p >.

4.8 Conclusions

We have presented the SPADE flow for IBC system implementation that considers
both pipelining and parallelism in an integral fashion to improve QOC of multipro-
cessor IBC implementations. We propose model transformations for modelling,
analyzing and mapping the IBC system. We explain how the SPADE approach can
explicitly take into account inter-frame dependencies in pipelining, image work-
load variations, application parallelism, resource sharing, camera frame rate and a
given platform allocation. We validate the SPADE approach using Matlab simula-
tions considering the predictable COMPSOC platform and using hardware-in-the-
loop experiments with an NVIDIA AGX Xavier platform. We observe that consider-
ing pipelined parallelism has inherent advantages over considering pipelining and
parallelism separately. Exploiting parallelism should be prioritized over pipelin-
ing. But pipelined parallelism is better when an application has a limited degree
of parallelism or when the inter-frame dependencies are significant. Future work
may involve exploring the optimal degree of pipelining and parallelism when mul-
tiple IBC systems are sharing a platform.
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IBC design considering workload
variations

We consider the problem of designing an image-based control (IBC) applica-
tion mapped to a multiprocessor platform. Sensing in IBC consists of compute-
intensive image-processing algorithms whose execution times are dependent on
image workload. The challenge is that the IBC systems have a high (worst-case)
workload with significant workload variations. Designing controllers for such IBC
systems typically consider the worst-case workload that results in a long sensing
delay with suboptimal quality-of-control (QOC). The challenge is: how to improve
the QOC of IBC for a given multiprocessor platform allocation while exploiting
workload variations?

In the previous chapters, we addressed this problem by considering a switched
system where the switching is assumed to be arbitrary (Chapters 2 and 4) or using
a compute-intensive adaptive model-predictive control (MPC) formulation based
on an input-output model (Chapter 3). In this chapter, we present a controller syn-
thesis method based on a Markovian jump linear system (MJLS) formulation con-
sidering workload variations. Our method assumes that system knowledge is avail-
able for modelling the workload variations as a Markov chain. In real-life situa-
tions, switching is not arbitrary and the switching probabilities can be modelled as
transition probabilities in the Markov chain. We compare the MJLS-based method
with two relevant control paradigms - linear quadratic regulator (LQR) control
considering worst-case workload, and switched linear control - with respect to
QOC and available system knowledge. Our results show that taking into account
knowledge about switching probabilities in workload variations in controller de-
sign benefits QOC compared to the controller design methods using switched LQR
presented in Chapters 2 and 4. We then provide design guidelines on the control
paradigm to choose for an IBC application given the requirements and the system
knowledge.

The content of this chapter is an adaptation of the following paper:
Sajid Mohamed, Asad Ullah Awan, Dip Goswami, and Twan Basten. Designing image-based control
systems considering workload variations. In 58th Conference on Decision and Control (CDC), pages
3997–4004. IEEE, 2019.
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Figure 5.1: An IBC system: block diagram (repeating Fig. 1.4 (a), for readability)

5.1 Background and contributions

IBC systems are a class of data-intensive feedback control systems having cam-
era(s) as the sensor (see Fig. 5.1). IBC has become popular with the advent of effi-
cient image-processing systems and low-cost complementary metal–oxide semi-
conductor (CMOS) cameras with high resolution [29] [135]. The combination of
the camera and image processing (sensing) gives necessary information on param-
eters such as relative position, geometry, relative distance, depth perception and
tracking of the object-of-interest. This enables the effective use of low-cost camera
sensors to enable new functionality or replace expensive sensors in cost-sensitive
industries like automotive [29] [101] [110].

A typical implementation of an IBC system uses LQR control [37] and con-
siders the worst-case workload [110]. However, this leads to a long sensing delay,
poor effective resource utilisation in the multiprocessor platform, and suboptimal
QOC [110]. Fig. 5.2 illustrates these challenges. The camera captures an image
stream at a fixed frame rate (frames per second (FPS)). The execution times of
the compute-intensive processing (sensing) of the image stream depend on image
workload variations. The workload variations occur due to image content and re-
sult in a wide range between best-case and the worst-case image-processing times.

The workload variations can, however, be statistically analysed, e.g., as a PERT
distribution [1] or discrete-time Markov chain (DTMC) [139], from observed data
and can be modelled as workload scenarios (explained in Chapter 2). The work-
load scenarios can be modelled (e.g. as a task graph or a dataflow graph), analysed
(for timing) and then mapped to a multiprocessor platform. A system scenario
abstracts multiple workload scenarios having the same sampling period as deter-
mined by platform constraints. An optimal mapping and controller may then be
designed for each system scenario.

For efficiently designing IBC systems, we should consider the workload varia-
tions and the given platform allocation. An ideal design approach should: (i) iden-
tify, model and characterise the workload scenarios; (ii) find optimal mappings for
these workload scenarios for the given platform allocation; (iii) identify optimal
system scenarios; and (iv) design a controller with high overall QOC for the chosen
system scenarios. One of the critical aspects here is: what is a good metric to de-
fine the QOC for the application? A vision-guided braking application requires a
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Figure 5.2: Illustration of IBC system implementation and challenges for LQR control de-
sign considering worst-case workload. S: sensing and image processing, C: con-
trol computation and A: actuation, see Fig. 5.1. (Adapted from Fig. 2.2, for read-
ability.)

fast settling time, whereas an automotive vision-based lateral control [127] appli-
cation requires to minimise the reference tracking error.

Section 1.6 introduces the scenario- and platform-aware design (SPADE) ap-
proach for designing IBC systems. SPADE characterises a set of frequently occur-
ring workload scenarios, identifies a set of system scenarios that abstract multiple
workload scenarios based on platform constraints, and designs a switched linear
control system for these system scenarios to improve QOC. However, if the number
of switching subsystems is high, a challenge in SPADE is the difficulty to guarantee
stability for the resulting switched system [93, 135]. In case of failure to guarantee
stability, SPADE as developed so far in the earlier chapters would result in LQR
control for the worst-case workload scenario.

The contributions of this chapter are as follows:

• We present an alternate controller synthesis method based on a MJLS for-
mulation for the control design step in the full SPADE approach of Chap-
ter 4. Our synthesis method involves the following steps. (i) Modelling work-
load variations as a DTMC, (ii) system scenario identification, and (iii) con-
troller design and implementation. The motivation to choose the MJLS ap-
proach [30] over other standard sampled-data linear control design tech-
niques [100] is that it does not require us to know the exact sequence of in-
coming sample times due to the workload variations apriori.

• We provide design guidelines on the applicability of control design meth-
ods for given requirements, implementation constraints and system knowl-
edge. For this, we compare the three control paradigms – optimal control
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design using LQR, switched linear control design [135], and controller syn-
thesis using the MJLS formulation – for IBC system design with respect to
QOC while taking into account available system knowledge and implemen-
tation constraints, i.e., camera fps, platform allocation and mapping. Note
that we cannot compare with adaptive [52] or model predictive control [15]
approaches since we do not know the exact sequence of occurrence of in-
coming sample times due to the workload variations apriori.

5.2 Embedded image-based control

We consider a setting for an IBC system as shown in Fig. 5.1. Our sensor is the
camera module that captures the image stream. The image stream is then fed to
an embedded platform, e.g., a multiprocessor system-on-chip (MPSOC), at a fixed
frame rate (fps), e.g., 30 fps. The tasks in our IBC application - compute-intensive
image sensing and processing (S), control computation (C) and actuation (A) - are
then mapped to run on this MPSOC.

5.2.1 Linear time-invariant (LTI) systems

We consider an LTI system of the following form:

ẋ(t ) = Ac x(t )+Bc u(t ), (5.1)

y(t ) =Cc x(t ),

where x(t ) ∈ Rn represents the state, y(t ) ∈ R represents the output and u(t ) ∈ R
represents the control input of the system at any time t ∈ R≥0. Ac , Bc and Cc rep-
resent the state, input and output matrices of the system, respectively.

We illustrate our work using the motivating case study of a vision-based lateral
control system model explained in Section 1.7. We consider the LTI model with
vx = 15m/s, and

Ac =



−10.06 −12.99 0 0 0

1.096 −11.27 0 0 0

−1.000 −15.00 0 15 0

0 −1.000 0 0 15

0 0 0 0 0

 , Bc =



75.47

50.14

0

0

0

 .

The fifth system state captures the curvature of the road at the look-ahead dis-
tance. The fifth state is required for observability of road curvature. The control
input u(t ) is the front wheel steering angle δ f and the output y(t ) is the look-ahead
distance yL leading to Cc = [0 0 1 0 0].
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5.2.2 Implementation, control law and control configurations

The discrete-time control implementation we consider is already explained in
Section 2.2.2. The control input u[k] is a state feedback controller of the following
form,

u[k] = Ksi z[k]+Fsi rr e f

where Ksi is the state feedback gain and Fsi is the feedforward gain both designed
for the workload scenario si . rr e f is the reference value for the controller. The
approaches we use for designing the gains are explained in Section 5.5.

For each workload scenario si , we then define a control configuration χc
si

as a
tuple χc

si
= (hsi ,τsi ,Ksi ,Fsi ).

5.3 IBC model, mapping and configurations

In this chapter, we consider the scenario-aware dataflow (SADF) model of Fig.
2.3(a) with the same execution time parameters as our application model. The
modelling, mapping and analysis of this SADF model has already been explained
in detail in Chapter 2 and is not repeated here. In Chapter 2, the workload varia-
tions are characterised using a PERT distribution [1] (see distribution in Fig. 5.2).
Using this information, the probability of frequently occurring workload scenarios
are characterised. However, information regarding scenario transitions is not cap-
tured. This means that any arbitrary order for scenario switching sequences needs
to be considered in the language of the SADF model.

In the MJLS-based approach, the workload variations are characterised using
a DTMC that takes into account the scenario transition probabilities. The states of
the DTMC model the workload scenarios (see Section 5.5.1) and the transitions in
the DTMC model the scenario transitions. This means that the DTMC determines
the language of the SADF model [129].

5.4 Control problem and QOC metrics

We consider a regulation problem for the IBC system. That is, the control objec-
tive is to design u[k] such that y[k] → rr e f (a constant reference) as k →∞. The
control objectives can be performance-oriented, control effort/energy-oriented or
a combination of both. The control performance quantifies, in essence, how fast
the output y[k] reaches the reference rr e f . The control effort is the amount of
energy or power necessary for the controller to perform regulation. The control
performance and effort are parameters that can be tuned in the cost function for
the LQR design and MJLS synthesis using the state and input weights. We evalu-
ate QOC of an IBC application considering the following metrics: two commonly
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used control performance metrics - mean square error (MSE) (explained in Sec-
tion 2.2.5) and settling time (ST) (explained in Section 4.2.2) and two commonly
used metrics to evaluate control effort/energy - power spectral density (PSD) and
maximum control effort (MCE).
Power spectral density (PSD): The PSD of a signal describes the power present in
the signal as a function of frequency, per unit frequency. It tells us where the av-
erage power is distributed as a function of frequency. We use Welch’s overlapped
segment averaging spectral estimation method [138] to compute PSD of our con-
trol input. Lower PSD for the control input signal implies that the energy required
is less and hence QOC is better.
Maximum control effort (MCE): We define the maximum control effort as
maxk ‖u[k]‖. A lower MCE means better QOC. MCE can also be used to identify
input saturation, if any.

5.5 Control design

The control design technique we choose decides the controller feedback and
feedforward gains K and F for the control law defined in Section 5.2.2. To design a
controller, we assume that the sampling period hi and sensor-to-actuator delay τi

are known.

5.5.1 MJLS synthesis

In this section, we characterise the workload variations as a DTMC. The states
of a DTMC model the workload scenarios and the transitions model the scenario
switching. We aggregate workload scenarios into system scenarios as explained
in Section 2.5.3, and then recompute transition and steady-state probabilities for
the DTMC. This results in a DTMC with number of states equal to the number of
identified system scenarios, with each state representing a system scenario. We as-
sume that the switching between the different control configurations is governed
by this DTMC and show how the system in (5.1) can be re-cast as a MJLS [30]. For
the sake of simplicity, we illustrate the formulation using only three states in the
DTMC representing three system scenarios. Note, however, that it is applicable to
any number of identified system scenarios (as explained in Section 2.5.3).

A Markov chain consists of a tuple M = (X ,P ) where X represents the state
space, and P represents the one-step transition probability matrix. In our context
of system scenarios annotated with sampling period and sensor-to-actuator de-
lay, the state-space of M is given by X = {s1, s2, s3}, where si = (hi ,τi ), i ∈ {1,2,3}
represent three system scenarios, and

P =

p11 p12 p13

p21 p22 p23

p31 p32 p33

 .



5

5.5 Control design 127

Associated with M is a discrete-time stochastic process θ :N→ X such that for all
times sampling instances k ∈N, and states si , s j ∈ X , i , j ∈ {1,2,3}, one has:

Prob(θ[k +1] = s j | θ[k] = si ) = pi j ,

i.e., pi j represents the probability of transitioning from state si to s j . We assume
that the initial condition of the stochastic process, i.e., θ[0], is deterministic.

Using a zero order sample-and-hold approach, it can be readily shown that
Eq. (5.1) can be re-formulated into an MJLS governed by the following stochastic
difference equations:

x[k +1] = Aθ[k]x[k]+B0,θ[k]u[k]+B1,θ[k]u[k −1],

y[k] =Cc x[k] (5.2)

where for each si ∈ X , i ∈ {1,2,3}: Asi , B0,si , and B1,si are computed using Eq. 2.3.
In Eq. 5.2, we assume that u[−1] = 0 for k = 0. We define the new system states

z[k] =
[

x[k] u[k −1]
]T

with z[0] =
[

x[0] 0
]T

to obtain a higher-order aug-

mented system as follows:

z[k +1] = Aaug ,θ[k]z[k]+Baug ,θ[k]u[k],

yz [k] =Caug z[k]

where for each si ∈ X , i ∈ {1,2,3}, Aaug ,si and Baug ,si are computed using Eq. 2.5

and Caug =
[
Cc 0

]
.

Infinite-horizon quadratic optimal controller: Here, we present the control law
design for the MJLS of Eq. 5.2. We design a controller to minimize the infinite-
horizon cost given by

J (θ[0], z[0],u[0]) =
∞∑

k=0
E[z[k]T C T

aug Caug z[k]+d 2
u |u[k]|2],

where du ∈ R>0 represents the input weight and the notation E[X ] represents the
expected value of a random variable X .

It is shown in [30] that the solution to the above infinite-horizon optimal-
control problem can be obtained by solving the coupled algebraic Riccati (matrix)
equations (CARE)

Γi = AT
aug ,si

Ei (Γ)Aaug ,si +C T
c Cc

− AT
aug ,si

Ei (Γ)Baug ,si (BT
aug ,si

Ei Baug ,si )−1BT
aug ,si

Ei (Γ)Aaug ,si

where
Ei (Γ) =

3∑
j=0

pi jΓ j
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where i ∈ {1,2,3} and Γ= {Γ1,Γ2,Γ3} are the unknown matrices to be solved for. The
mean-square stabilizing optimal control law is then given by

u[k] = Kθ[k](Γ)x[k]+Fθ[k]rr e f ,

where

Ksi =−(B T
aug ,si

Ei (Γ)Baug ,si )−1B T
aug ,si

Ei (Γ)Aaug ,si ,

Fsi =
1

Caug (I − Aaug ,si −Ksi Baug ,si ))−1Baug ,si

,

where i ∈ {1,2,3}. It is shown in Theorem A.12 in [30] that the above CARE can be
solved by solving a related convex optimization problem.

In the context of SPADE, the control configuration for a workload scenario si

is then (τsi , hsi , Ksi , Fsi ).

5.5.2 LQR design with worst-case workload

We consider the system scenario for the worst-case workload swc having the
worst-case period and delay (hwc ,τwc ) (one of the scenarios as explained in Sec-
tion 2.5.3) for designing the control law. The worst-case system scenario for the
MJLS formulation is same as swc . We design a controller to minimize the follow-
ing cost function

J (u) =
∞∑

k=0
z[k]T dsC T

aug Caug z[k]+d 2
u |u[k]|2,

where du ,ds ∈ R>0 represents the input weight and the state weights respectively.
The weights are optimized for the considered QOC metric. Typically, du ¿ ds so
as to optimise for control performance and du À ds to optimise for control energy
(see Section 5.6.2).

5.5.3 Switched linear control design

The switched linear control design we consider is explained in Section 2.2. This
is the basic principle used in the controller designs presented in Chapters 2 and
4. Frequently occurring workload scenarios are characterised using the the PERT
distribution. A set of optimal system scenarios are identified. LQR controllers are
designed for each of these scenarios ss with (hs ,τs ) that minimises the cost func-
tion given in Section 5.5.2. Further, the stability of this switched system is analysed
by deriving linear matrix inequalities (LMIs) that check for the existence of a com-
mon quadratic Lyapunov function (CQLF).
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5.6 Results, observations and guidelines

We consider the case-study of vision-based lateral control for a vehicle (explained
in Section 5.2) for comparison of the three approaches for control design with re-
spect to the QOC metrics described earlier. The controllers for LQR and switched
linear control are tuned for the corresponding QOC metric evaluation by adjusting
the input and state weights.

5.6.1 Simulation results

We illustrate an instance of our simulation that compares the three control
paradigms: (i) for a reference output profile (for the control state yL) shown in
Fig. 5.3 (a), we see that the switched linear control system (SLC) settles faster than
both the MJLS and LQR designs; and (ii) for control input shown in Fig. 5.3 (b), we
see that minimum control effort is needed for LQR. SLC needs the highest con-
trol effort and might violate the input saturation requirements, if any. The con-
trol metrics PSD and MCE are derived from the control input u[k] plots (e.g., see
Fig. 5.3 (b)) and focus on minimizing the control effort or energy, whereas the con-
trol metrics MSE and ST are derived from the considered control output yL plots
(e.g., see Fig. 5.3 (a)) and focus on improving the performance of the system out-
put.

We consider for the above simulation instance a frame rate of 30 fps, i.e.,
fh = 1

30 = 33.33 ms and an allocation of two processors. Then, we characterise
the workload variations of a synthetic data set using a DTMC model. We notice
that the (hi ,τi ) for the worst-case workload swc for this allocation is (100,74) ms.
We then identify (as explained in Section 2.5.3) the three possible system scenar-
ios {s1 = ( fh ,33), s2 = (2 fh ,57), s3 = swc = (3 fh ,74)} ms. The transition probability
matrix of the DTMC model considered in this case for the three scenarios is:

P =

 0.5 0.25 0.25

0.25 0.5 0.25

0.25 0.25 0.5

 .

The three controllers are then designed for the above scenarios as explained in
Section 5.5 using the input weight du = 1.

The control performance is then evaluated for the QOC metrics (defined in Sec-
tion 5.4) - MSE, ST, PSD, MCE and combinations of MSE/ST with PSD/MCE.
The combinations of MSE/ST with PSD/MCE is considered as they are contra-
dictory in nature and optimising both together is a challenge and often times nec-
essary. The above QOC metrics’ empirical cost for each control technique is evalu-
ated over multiple runs of the simulation. Each simulation run generates different
workload scenario sequences that satisfy the modelled DTMC. These scenario se-
quences determine the switching sequence for both the SLC and MJLS control
designs.
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(c) Output yL when input weight du = 10.
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(d) Input u[k] when input weight du = 10.

Figure 5.3: Comparison between controller synthesis method based on MJLS formula-
tion (Section 5.5.1), LQR design (Section 5.5.2), and SLC system design (Sec-
tion 5.5.3).

5.6.2 Exploration and observations

In order to provide design guidelines, we consider and vary the following differ-
ent parameters: number of scenarios - we consider 3, 4 and 6 system scenarios;
camera frame rates - 30 and 60 fps; input and state weights used for tuning the
controllers; given platform allocation - 1, 2, 3, 4, 5, and 6 processors; and available
system knowledge. We then evaluate the empirical cost of the QOC metrics for
each control technique over multiple runs of the simulation. The effects of varying
these parameters are explained as follows:

1. The number of states in the DTMC model, the corresponding transition
probability matrix and the number of control configurations change propor-
tionally with the number of scenarios we consider. Only the SLC and MJLS
system are affected by this parameter as the LQR approach always (and only)
considers the worst-case workload scenario;

2. Changing the camera frame rate affects the total number of feasible scenar-
ios we can have. As the maximum number of scenarios we can have, intu-
itively, is equal to d τwc

fh
e, where τwc is the sensor-to-actuator delay for the

worst-case workload (for a given platform allocation) and fh = 1
camera fps ;

3. The input and state weights directly affect the control performance. E.g. for
the simulation instance considered before, if we set the input weight du = 10,
we obtain the plots shown in Fig. 5.3 (c) and Fig. 5.3 (d). What we observe is
a similar overall trend for the considered control paradigms. However, we
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Table 5.1: Guidelines for choosing the control design techniques: MJLS (Section 5.5.1), LQR
(Section 5.5.2), SLC (Section 5.5.3).

Available system knowledge

QOC metrics

Performance Control energy Performance

and EnergyMSE ST MCE PSD

Only worst-case workload information LQR LQR LQR LQR LQR

Frequently occurring workloads as a PERT SLC SLC LQR LQR SLC/ LQR

Frequently occurring workloads and their

transition probabilities as a DTMC

SLC/

MJLS

SLC/

MJLS

MJLS/

LQR

MJLS/

LQR
MJLS

see poorer QOC metrics for MSE and ST and better QOC metrics for PSD
and MCE, when compared to du = 1 and all other parameters remaining the
same;

4. The given platform allocation directly affects the timing parameters for a
scenario si , i.e., (hi ,τi ). A higher number of available processors mean that
we could execute more tasks in parallel and reduce the (hi ,τi ) (even) for the
worst-case workload scenario. This means that we could possibly reduce the
total number of scenarios as well;

5. System knowledge is an important parameter that determines which con-
trol design techniques can be used. An optimal control design using LQR
only requires the worst-case (workload) timing information. However, de-
signing an SLC system requires information regarding frequently occurring
workloads as well and for the MJLS synthesis approach, we need both the
frequently occurring workloads and their transition probabilities.

5.6.3 Design guidelines

The design guidelines we have inferred from observing our simulations for choos-
ing the control design techniques for different QOC metrics and available system
knowledge are listed in Table. 5.1. The cases we see in the table are explained be-
low.

• Only worst-case workload information is known: This situation is quite com-
mon for a control designer. Worst-case response time or delay of the algo-
rithms can be analysed (where often times are pessimistic) through profiling
and/or analytical methods [110]. The control designer is then given only
the worst-case timing information and is asked to design a controller with a
QOC requirement. In this case, the SLC and MJLS approach are not appli-
cable and only the optimal LQR design approach can be used.

• PERT distribution is known: Here, like we did in Chapters 2 and 4, we as-
sume that the information with respect to frequently occurring workloads
is known and are characterised analytically as a PERT distribution [1]. In
this case, SLC wins for performance-oriented metrics - MSE and ST, and
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LQR wins for control effort or energy-oriented metrics - PSD and MCE.
For jointly optimising performance and energy, there is no clear winner as
it depends mainly on which of the two metrics is more important. If perfor-
mance is important, SLC is preferred and if energy is important, LQR should
be chosen. The MJLS approach is not applicable as more information is
needed.

• DTMC model is known: Information regarding frequently occurring work-
loads and their transition probabilities are needed for modelling a DTMC.
These can be estimated from observed workload-variations data [139]. In-
tuitively, this means that we can predict the possible (workload) scenario
switching sequences for the control design. However, for the above two cases
the switching sequence is assumed to be arbitrary and not known. In this
case, for performance metrics, MJLS wins when the input weight du is very
small (since SLC tends to oscillate before settling). However, for a large value
of du , there is no clear winner between SLC and MJLS and it depends on the
application and chosen parameters. Please note, however, that a challenge
of SLC is to prove the stability of the designed system. MJLS is a synthesis
method and the design, if any, is stable by construction.
If we consider control effort or energy metrics, LQR wins when the input
weight du is small and there is no clear winner between LQR and MJLS for
a large input weight du as the results are similar and depend on the applica-
tion and chosen parameters. MJLS is the clear winner if we consider a joint
optimisation for performance and energy QOC metrics.

5.7 Conclusions

We presented a MJLS formulation for controller synthesis for image-based con-
trol systems considering workload variations and platform implementation con-
straints. Within the scope of SPADE, we further compare this method with two
relevant control paradigms: LQR and switched linear control system design. We
also provide design guidelines on the control technique to use for given constraints
on the system knowledge, the QOC, and the implementation.

The synthesis method assumes that the workload variations can be charac-
terised as a DTMC. A DTMC is sensitive to the data used for its modelling. As a
future work, sensitivity analysis of the DTMC towards the QOC needs to be evalu-
ated. Further, the current design guidelines are provided based on multiple empir-
ical simulation runs of the controller for varying workloads, number of scenarios,
camera frame rate and given platform allocation. A formal mathematical analysis
would strengthen our design guidelines. The challenge for a formal analysis of
the control design is that we do not know the exact sequence of occurrence of the
workload variations apriori.
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Approximation-Aware Design of
IBC Systems

Image-based control (IBC) systems are common in many modern applications.
In such systems, image-based sensing imposes massive compute workload, mak-
ing it challenging to implement them on embedded platforms. Approximate im-
age processing is a way to handle this challenge. In essence, approximation re-
duces the workload at the cost of additional sensor noise. In this work, we pro-
pose an approximation-aware design approach for optimizing the memory and
performance of an IBC system, making it suitable for embedded implementa-
tion. We perform compute- and data-centric approximations and evaluate their
impact on the memory utilization and closed-loop quality-of-control (QOC) of the
IBC system. Further, an IBC system operates under several environmental sce-
narios, e.g., weather conditions. We evaluate the sensitivity of the IBC system
to our approximation-aware design approach when operated under different sce-
narios and perform a failure probability (FP) analysis using Monte-Carlo simula-
tions to analyze the robustness of the approximate system. Further, we design an
optimal approximation-aware controller that models the approximation error as
sensor noise and show QOC improvements. In essence, this is an alternative de-
sign paradigm in the scenario- and platform-aware design (SPADE) flow to deal
with high compute workload, complementary to parallelisation and pipelining.
We demonstrate the effectiveness of our approach through the lane-keeping as-
sist system (LKAS) case study using a heterogeneous NVIDIA AGX Xavier embed-
ded platform in a hardware-in-the-loop (HIL) framework. Both the platform and
the LKAS case study were already introduced in Chapter 1. We show substantial

The content of this chapter is an adaptation of the following three papers:

1. Sayandip De, Sajid Mohamed, Dip Goswami, and Henk Corporaal. Approximation-aware de-
sign of an image-based control system. IEEE Access, 8: 174568–174586, 2020.

2. Sayandip De, Sajid Mohamed, Konstantinos Bimpisidis, Dip Goswami, Twan Basten, and Henk
Corporaal. Approximation trade offs in an image-based control system. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1680–1685. IEEE, 2020.

3. Sajid Mohamed, Sayandip De, Konstantinos Bimpisidis, Vishak Nathan, Dip Goswami, Henk
Corporaal, and Twan Basten. IMACS: A Framework for Performance Evaluation of Image Ap-
proximation in a Closed-loop System. In 8th Mediterranean Conference on Embedded Comput-
ing (MECO), pages 1–4, 2019.
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memory reductions and QOC improvements with respect to the accurate imple-
mentation. Approximate computing also helps to improve energy efficiency of our
design. This last aspect of the work, reported in [36], is excluded in this thesis as it
is not the primary focus of this thesis.

6.1 Background and contributions

IBC systems are feedback control systems that rely on image-based sensing data
obtained from (a) camera sensor(s). Advancements in camera technologies,
image-processing algorithms and parallel computing heterogeneous platforms
have made IBC systems immensely popular in automotive applications [16] like
advanced driver assistance systems (ADASs), autonomous driving systems, etc.
However, the enormous compute requirements of IBC systems make them chal-
lenging to be implemented on such platforms without sacrificing control perfor-
mance. The focus of this work is to improve the compute and memory efficiency
of IBC systems (implemented on embedded platforms) by introducing approxi-
mations, without sacrificing the control performance. In essence, approximation
reduces the compute workload at the cost of additional sensor noise. However, the
inherent error resilience of IBC systems allows the introduction of this additional
sensor noise without sacrificing control performance.

A typical IBC system consists of a sensing task (S), a control task (C) and an ac-
tuation task (A) (see Fig. 6.1). S involves pre-processing the image frames obtained
from the camera sensor and extracting application-specific features. C applies the
control algorithm using these extracted features and A implements the control de-
cisions in the environment. A worst-case execution time (WCET) analysis shows
that the execution time of S is orders of magnitude higher than those of C and A,
thus, resulting in a long sensing-to-actuation delay τ (see Fig. 6.1).

Raw Image Data

Sensor‐to‐actuation delay (τ)

Sensing delay

Time

Raw Image Data Raw Image Data

S C  A S C  A S C  A

S
C
A

Figure 6.1: Tasks in an IBC system: Runtimes for the sub-tasks are shown for a LKAS imple-
mented on NVIDIA AGX Xavier embedded platform [47] (8-core central process-
ing unit (CPU)+graphical processing unit (GPU)). Runtimes are shown for 512 ×
256 resolution images.

The QOC of an IBC system depends on the sensing-to-actuation delay τ.
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Smaller τ results in a lower sampling period for the controller, which improves
the overall QOC. The sensing task (S) is the main bottleneck in lowering τ. Besides
through parallelisation, as already explained in Chapter 2, approximate comput-
ing can reduce the WCET of S by reducing the compute while introducing sensor
noise. IBC systems are equipped with image-signal processing (ISP) pipelines op-
timized for human visual consumption; control algorithms, which are inherently
resilient to sensor noise, do not need the high-quality images produced by these
pipelines. The work in this chapter focuses on system approximation by reducing
the compute workload of the ISP and the data transfer traffic to off-chip memory,
resulting in better QOC of the overall system.

Reduced compute workloads due to approximations introduce new task map-
ping opportunities for parallelised sensing tasks. Approximate tasks can be
mapped to slower power-efficient platform cores, while operating the controller
at the same sampling period, guaranteeing proper system functionality. The com-
bined impact of both approximations and platform mappings was not explored
in the literature prior to this work. The work in this chapter explores the interplay
between the degree of approximation and different platform mappings while ana-
lyzing their impact on QOC and memory efficiency of the entire IBC system.

A point to consider is that approximation introduces errors in the measure-
ment of states of the system. We propose a method to design an approximation-
aware optimal linear-quadratic-Gaussian ( LQG) controller by modelling the ap-
proximation error as sensor noise.

IBC systems operate under different environmental scenarios [59]. For exam-
ple, image feedback at night requires a different nature of processing compared
to the same during the day in ADAS. These scenarios significantly influence the
degree of approximation that can be tolerated without destabilizing the system.
The robustness study on how approximations impact the IBC performance un-
der different environmental scenarios is essential but is was also not addressed
in prior literature. For different environmental conditions, we design different
approximation-aware controllers and show that our approach is robust to different
environmental scenarios by performing a FP analysis for the approximate system
using Monte-Carlo simulations.

In summary, our approach takes into account various artefacts of
approximation-in-the-loop in terms of platform mapping and controller de-
sign, while considering robustness to failures. We refer to this approach as
approximation-aware IBC design. The key contributions of this work are as
follows:

1. Performance evaluation for IMAge-based Control Systems ( IMACS) frame-
work: The IMACS framework1 (Section 6.3) helps to test and evaluate the
impact of approximation in closed-loop feedback systems. First, the re-
silience of the given IBC system to different approximation choices is anal-

1The IMACS framework is open sourced and can be accessed on github: https://github.com/sajid-
mohamed/imacs
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ysed. Second, for each approximation choice, the sensing delay is com-
puted, and the error due to approximations is quantified using the IMACS
framework.

2. Optimized approximation-aware IBC2: We illustrate the potential of ex-
ploiting the inherent error resilience of IBC systems by performing coarse-
grained computation skipping in the ISP (compute-centric approximation,
Section 6.6.2). Further, we introduce two optimizations on top. First, we
perform a data-centric approximation by varying the degree of lossy com-
pression post-ISP (Section 6.6.3), which shows a memory reduction of up
to 88%, and hence a performance improvement. Second, we design an
approximation-aware LQG controller that models the errors due to approx-
imation as sensor noise (Section 6.7). These approximations and optimiza-
tions turn out to substantially improve the overall QOC compared to the ac-
curate implementation.

3. Scenario-awareness: Environmental scenarios significantly influence the de-
gree of approximation that can be tolerated without destabilizing an IBC
system. We perform scenario-specific optimization considering six differ-
ent environmental scenarios relevant for LKAS, i.e., day, night, dawn, dusk,
fog, snow. We show that scenario-specific approximation decisions improve
the overall QOC (Section 6.9).

4. Failure probability analysis: Applicability of our proposed approach to
safety-critical systems (such as LKAS) require FP analysis to comply with
well-accepted safety margins [17]. In this work, we perform FP analysis
based on Monte-Carlo simulations to show the robustness of approximate
IBC systems designed using our approach (Section 6.10).

Improving the runtime performance of the sensing task through approxima-
tions is complementary to the SPADE approach presented in earlier chapters.
The SPADE approach for an industrial platform (explained in Section 4.7) al-
ready uses the approximated sensing algorithm introduced in this chapter. The
approximation-aware design offers alternatives in terms of sensing (with approxi-
mate ISP) and controller (i.e., approximation-aware controller) in the SPADE flow.

6.2 Related work

Prior efforts in the approximate computing domain can be broadly classified into
compute-centric and data-centric approaches.
Compute-centric approximations: Compute-centric efforts are focused on re-
ducing the compute workload across algorithm, architecture and circuit levels.

2Our approximation-aware design framework is open sourced and can be accessed on github:
https://github.com/sayandipde/approx_ibc
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Commonly used algorithmic approximations are computation skipping [83], pre-
cision scaling [131], and replacing error-resilient compute-intensive functions
with neural networks [42]. A similar learning approach to design ISPs for new
camera systems is proposed in [62]. Next, at the architecture level, research ef-
forts have focused on both approximating general-purpose processors [27] as well
as domain-specific accelerators [33]. At the circuit level, research efforts focus on
manual design techniques for adders and multipliers [63], as well as automated
methodologies for designing energy-efficient approximate circuits [34].
Data-centric approximations: Data-centric approximations either approximate
the memory device that is being accessed or they approximate the value of the
data being accessed. Both cases lead to reduced on/off chip data traffic, thereby
reducing the required memory bandwidth. Reducing the dynamic random access
memory (DRAM) refresh rate [105] and load value speculation [111] are exam-
ples of approximating the memory location. Approximating data values involves
storing/accessing data in a compressed format [67]. Quality-aware memory con-
trollers for directing memory transactions to different compression schemes are
proposed in [108].

Both compute and data-centric approaches are focused on approximating in-
dividual subsystems. Individual subsystems are usually a part of bigger IBC sys-
tems. Proper interaction between them is key in ensuring system stability. How-
ever, approximating a subsystem might result in undesired behaviour in another,
thereby resulting in the failure of the entire IBC system. This is a major downside
of approximating each subsystem as a stand-alone entity.

To address these limitations, this chapter proposes a holistic full-system ana-
lysis approach wherein different subsystems are approximated together in a com-
pute or data-centric manner and the quality implications are evaluated for the
full-system rather than individual subsystems. An overview of prior efforts in full-
system approximation analysis highlighting the key differences from our work is
given below.
Full system approximation analysis: These approaches are targeted at different
application domains. For this study, we focus mainly on camera-based systems.
Approximation benefits in a camera-based biometric security system, using an
iris recognition application, is showcased in [57]. An approximate smart camera
system is introduced in [104], using camera resolution scaling, reducing memory
refresh rate and computation skipping. An approximate ISP pipeline tuned for
computer-vision algorithms is designed in [21], by skipping selected ISP stages.
An algorithm-hardware co-designed system is showcased in [145]. It leverages the
temporal motion information generated by ISPs to reduce the compute demands
of the perception engine, at the cost of accuracy loss.

These research efforts [21, 57, 104, 145] lack a closed-loop feedback behaviour.
Approximation decisions in a closed-loop system have quality implications at a
later point in time. Optimising a system while accounting for the temporal approx-
imate behaviour is not explored in [21, 57, 104, 145], making this a key distinguish-
able feature of our work. Additionally, looking solely from an approximation per-
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Table 6.1: Qualitative comparison with state-of-the-art system-level approximation ap-
proaches.

Contributions [57] [104] [21] [145] Our work

compute-centric optimizations X X X X X
data-centric optimizations X X

closed-loop approximations * X
evaluation framework SIL, HIL

platform mappings X
environmental scenarios X

approximation-aware controller X
real-system implementation X X Xä Xä

camera sensor X X 4 4 4
computation X X X 4 X

controller X
actuation 4

X True, Xä Partially True, 4 Modeling or Simulation.
SIL: Software-in-the-loop, HIL: Hardware-in-the-loop
* Closed-loop approximations: approximations in closed-loop feedback systems.

spective, some of the approximation techniques applied in these research efforts
can also be applied to our work for additional benefits. For instance, fine-grained
computation skipping techniques proposed in [104,106] can be applied in the ISP,
which is an interesting future research direction. Also, leveraging motion informa-
tion to relax the number of invocations of the perception stage (as shown in [145])
that typically follows the ISP stage is another interesting research direction.

Table 6.1 summarizes the key contributions of this work stacked up against
other state-of-the-art full system approximation approaches.

6.3 The IMACS framework

We consider a motivating case study of a LKAS to demonstrate our approximation-
aware IBC design approach. The IMACS framework helps to test and evalu-
ate the impact of approximation in closed-loop feedback systems. First, the re-
silience of the given IBC system to different approximation choices is analysed.
Second, for each approximation choice, the sensing delay is computed, and the
error due to approximations is quantified using the IMACS framework. Then, an
approximation-aware controller is designed, for each approximation choice, by
considering the sensing delay and modelling the quantified error due to approxi-
mations as sensor noise (explained later in Section 6.7).

Fig. 6.2 illustrates the IMACS HIL simulation setup for LKAS. The detailed de-
scription of the IMACS framework is reported in [87]. The IMACS framework sup-
ports X-in-the-loop (XIL) simulation and is not just limited to HIL simulation. It
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Figure 6.2: IMACS HIL simulation setup for the LKAS system.

simulates a vehicle with a top look ahead camera using a physics simulator en-
gine, e.g.. Webots [84], and interacts with a hardware platform, e.g.. an NVIDIA
AGX Xavier platform, using the transmission control protocol/internet protocol
(TCP/IP) protocol. The simulator works in a server-client configuration, wherein
the physics simulator engine acts as the server while the platform acts as the client.
The server (Webots) progresses simulation in full synchronization with the client
(NVIDIA AGX Xavier) [47]. At each simulation step, the camera sensor simulated
in Webots generates a raw image containing state information x[k], that is fed to
the NVIDIA platform. It executes the sensing (S) and control (C) tasks to generate
control input u[k], which is communicated back to Webots for actuation. After
actuation, the simulation progresses to the next step.

For the scope of this chapter, the IMACS framework uses the following con-
figuration settings. The camera sensor in the Webots simulator is modelled based
on the AR1335 complementary metal–oxide semiconductor (CMOS) digital im-
age sensor [6] and is set to a resolution of 720p3. The camera frame rate is var-
ied between 30 fps, 60 fps and 120 fps, depending on the sampling period of the
controller. The actuation dynamics are modelled based on [107]. The vehicle is

3We observe that state-of-the-art lane detection algorithms [98] operate on low-resolution images.
So, we perform our evaluation using downscaled (512×256) sensor images. We believe our approach is
also effective for high-res images required in applications like object detection.
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Figure 6.3: Overview of ISP and perception (PR) stages with their corresponding outputs.

initially positioned with a fixed bias of 15 cm from the lane centre to test the con-
trol performance. A lane width of 3.25 m is considered, as per standard road safety
guidelines. The Webots simulation step is set to 1 ms, while the vehicle speed vx is
set to 50 km/hr for all of our evaluations.

6.4 LKAS implementation: overview

A LKAS consists of six main components/stages: Camera Sensor, ISP, data com-
pression, PR, control (C) and actuate (A), as shown in Fig. 6.2. The camera sensor
and actuation are modelled and executed in Webots. ISP, data compression, PR
and control are executed on the NVIDIA AGX Xavier platform. Below, we provide
an overview of these stages. The ISP and PR stages are also illustrated in Fig. 6.3.

6.4.1 Image-signal processing (ISP) and perception (PR)

An ISP pipeline transforms a RAW image in the Bayer domain to pixels in the RGB
domain through a series of image enhancing stages. Modern ISPs comprise of
hundreds of proprietary stages. However, in this work, we consider a set of five
essential stages common to all ISP pipelines, demosaic, denoise, color map, gamut
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map and tone map, as defined in [21]. Fig. 6.3(a) shows these five stages along with
their corresponding outputs. It is worth noting that the RGB output from the ISP
pipeline is typically stored in the main memory (off-chip DRAM) due to the large
size of the image data. In this work, we consider JPEG compression (see Fig. 6.3) to
reduce the data communication between different processing stages like ISP, PR,
etc.

The perception (PR) stage calculates the lateral deviation of the vehicle from
the centre of the lane by performing preprocessing, feature extraction and in-
ference steps on the decompressed ISP output. During preprocessing, first, the
region-of-interest (ROI) is selected based on the scene. A perspective transform
is then performed on the ROI to get a bird’s eye view of the lane ahead (see Fig.
6.3 (b) block 2 of the PR stage). During feature extraction, the candidate lane pixels
are extracted from the bird’s eye view image. For this, the bird’s eye view image
is converted to grayscale, and subjected to binarization using static thresholding
(see Fig. 6.3 (b) block 3 of PR). Finally, candidate lane pixels are obtained using
sliding windows ranging from bottom to top of the image. During inference, first,
the previously identified lane positions markers are fit to a second-order polyno-
mial. Then, these polynomials are used to calculate the centre of the lane at a
look-ahead (L) distance. The centre of the image in the x-direction is considered
as the vehicle’s current position. Using these two metrics, the lateral deviation in
the transformed domain (yLP ) is calculated (see Fig. 6.3 (b)). A reverse perspective
transform gives the final lateral deviation (yL) (see Fig. 6.3 (b))

6.4.2 Discrete-time control implementation (C)

We consider the bicycle model introduced in Section 1.7 for simulating the LKAS
and it is described as follows,

ẋ(t ) = Ac x(t )+Bc u(t ),

y(t ) =Cc x(t ),

where the following vehicle parameters in Section 1.7 are adapted for the BMWX5
car model in Webots (which are parameters of system matrices Ac , Bc and Cc ):
l f , lr (= 1.6975 and 1.2975 m respectively) denote distance of the front and rear
axles from the centre of gravity (COG); Iψ (= 6337.74 kg·m2) is the total inertia of
the vehicle around its COG; c f , cr (= 2×60000 N/rad) denote cornering stiffness of
the front and rear tires; and the total vehicle mass is m (= 2000 kg).

As in earlier chapters, we guarantee constant sensing-to-actuation delay τ by
enforcing an implementation with time-triggered activation of tasks. An imple-
mentation is annotated with a pair (hi ,τi ) that models the sampling period and
delay associated with it. The zero-order hold (ZOH) method is used to discretize
the system [48] with the annotated (hi ,τi ) to obtain an augmented system of the
form: z[k+1] = Ad z[k]+Bd u[k], where Ad and Bd are discretized matrices and the
augmented system states z[k] = [x[k] u[k −1]]T .
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Control law: The control input u[k] is a state feedback controller of the form

u[k] = K z[k],

where K is the state feedback gain. We design K using the optimal linear quadratic
regulator (LQR) [48]. The control objective is for the output y[k] → 0, when k →∞.

6.4.3 Hardware support for LKAS

An industrial embedded heterogeneous platform NVIDIA AGX Xavier [47] is con-
sidered for LKAS implementation, as explained in Section 1.3.3 and illustrated in
Fig. 6.4 (a). Note that Fig. 6.4 (a) only shows the IPs used in this work.
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Figure 6.4: LKAS task mappings on an 8-core CPU+GPU default configuration (CPU_-
8C+GPU). A comparison with software only (8-core CPU) configuration is
shown. Runtimes are shown for image workloads of (512x256) resolution.

Baseline Task Mapping: The main tasks in the LKAS that are executed on the
NVIDIA platform are ISP, JPEG encode/decode, PR and control (C). As an initial
step, we map all the tasks to an 8-core CPU only configuration. The measured
runtimes of the individual tasks are shown in Fig. 6.4(b). The ISP takes most of
the computation time. So, we map all the ISP tasks to the GPU (see Fig. 6.4 (c)).
The ISP is optimized using Halide [102] domain-specific language with GPU as
backend. Additionally, we also map parts of the JPEG encoding/decoding and PR
to the GPU. Fig. 6.4 (c) gives a detailed mapping overview. Task offloading from
CPU memory to GPU memory is a major bottleneck. We make use of the unified
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memory (a single memory address space accessible from any processor in a sys-
tem) support in NVIDIA Volta GPUs to optimize our mappings further. The control
task C is light in compute, so we map it to the CPU. This CPU-GPU task mapping
gives a runtime speedup of 4.7× over the initial 8-core CPU only mapping (see Fig.
6.4 (b)). We consider this as a baseline for exploring approximation opportunities
in LKAS.

6.5 Design and evaluation strategies

In this section, we first outline our approximation-aware design strategies for op-
timizing IBC performance (QOC) and memory utilization. We determine what
to approximate by identifying the error-resilient stages that can give maximum
benefits on approximation (Section 6.5.1). Then, we explain how to approximate
by summarizing the main steps of our approximation-aware IBC design (Sec-
tion 6.5.2). We then proceed to show how to interpret the outcomes by introducing
a QOC-optimal mode for approximated IBC systems (Section 6.5.3). Finally, we de-
scribe the quality metrics considered for evaluation (Section 6.5.4).
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Figure 6.5: Full system runtime profiling of LKAS on NVIDIA AGX Xavier
with default configuration (CPU_8C+GPU).

6.5.1 What should we approximate?

The first challenge is to identify the error-resilient as well as compute-heavy stages
in LKAS. These are target candidates that can give maximum gains. LKAS con-
sists of six different stages, starting with the image capture by the camera sensor
and ending with the actuation, as shown in Fig. 6.2. Actuation cannot be approxi-
mated as it depends on vehicle dynamics. However, prior literature has shown that
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the other stages (camera sensor [21], ISP [42], data compression [104], PR [33],
control [103]) can be approximated. So, to figure out the best approximation op-
portunities, we perform runtime profiling of LKAS.

Runtime profiling results for LKAS are shown in Fig. 6.5. Profiling is performed
using the default configuration of the NVIDIA AGX Xavier platform (see Fig. 6.4 (a)).
The system is running Ubuntu 18.04. For runtime profiling, we execute each stage
in LKAS 100 times and for 100 different images to reduce sensitivity to access lo-
cality. For each stage, we consider the maximum of all such execution runs to get
the WCET. For actuation, a WCET of 0.5 ms is considered [107].

From Fig. 6.5, it is evident that ISP, which consumes 83% of the total runtime, is
the main target candidate for approximation. Additionally, the off-chip data trans-
fer can also be optimized to obtain added gains. So, in the rest of the chapter, we
confine our scope to optimizing the ISP and the off-chip data transfer.

6.5.2 How to approximate and optimize LKAS?

In this work, we propose an approximation-aware design approach shown in
Fig. 6.6. Each of the contributions presented in this chapter is marked.

Optim 1 Optim 2 Optim 3

Image Signal 
Processing

(ISP)

Skip ISP stages
(compute‐centric)

JPEG Encode

Variable Q Factor
(data‐centric)

Control
(C)

Modeling 
approximation 
error as sensor 

noise

1

Explore Platform 
Mappings

CPU_1C
CPU_4C
CPU_8C, 

CPU_8C+GPU

2

Failure 
probability (FP) 

analysis

Based on 
Monte‐Carlo 
simulation 

4

Sensitivity to different 
environmental scenarios

Day, Night
Dawn, Dusk
Fog, Snow

3

Figure 6.6: Proposed approximation-aware design approach for IBC systems.

First, we perform coarse-grained approximations to the ISP (Optim 1) by
skipping one or more sub-stages within the pipeline (see Fig. 6.3 (a)). This is
a compute-centric approximation approach focused on reducing the compute
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workload of the ISP 4. Then we perform data-centric approximations by varying
the degree of lossy JPEG compression (Optim 2). The goal is to reduce the data
transfer traffic between the processor and off-chip DRAM, as accessing DRAM is
slow. The Q-parameter in the JPEG algorithm decides the degree of lossy com-
pression. A smaller value of Q denotes larger numerical values in the quantization
matrix, thereby leading to a higher level of compression. This comes at the cost
of larger errors in the decompressed image. In case of Optim 1, we choose the
highest value of Q (=100) and keep it constant, which results in a lower degree of
lossy compression. However, in the case of Optim 2, we use the Q-parameter as a
quality control knob and reduce it in discrete steps of 10 from Q = 100 to Q = 10.
This reduces the off-chip data transfer traffic and impacts the QOC, and memory
footprint of LKAS.

From a control-design perspective, approximations performed in Optim 1 and
Optim 2 introduce errors in the state of the system. The controller is unaware of
this added error. So, we design an approximation-aware LQG controller (Optim
3) by modelling the error as sensor noise. Profiling results in Fig. 6.5 show that
LKAS is compute-bound. So, we expect most gains from Optim 1 as it reduces the
compute workload of the system. We start by evaluating Optim 1. Then we incre-
mentally add Optim 2 and Optim 3. It is worth mentioning that Optim 1 and 2 are
not novel approximation strategies. However, the focus of this work is to evalu-
ate the combined impact of these optimizations (Optim 1, Optim 2, and Optim 3)
on the closed-loop QOC and memory of the LKAS, which is not explored in prior
literature.

LKAS operates under different environmental scenarios. We design
approximation-aware controllers for each scenario and evaluate the sensitivity of
LKAS to Optim 1, Optim 2, and Optim 3 when operated under these scenarios. We
set up six different environmental scenarios (day, night, dawn, dusk, fog and snow)
in Webots for analyzing the sensitivity of LKAS to approximation errors. LKAS is a
safety-critical application that requires an evaluation of its robustness to approxi-
mation error. So, we perform a FP analysis of approximate LKAS using HIL based
Monte-Carlo simulation.

6.5.3 How to analyze approximation-aware design outcomes?

To properly analyze the design points obtained from our approximation-aware de-
sign approach, we consider two different modes: approximation-only mode and
QOC-optimal mode. Fig. 6.7 shows a snapshot of LKAS operating in these modes
over a fixed evaluation time window (tET W ). In approximation-only mode, we
consider a reduced sensing-to-actuation delay τ obtained due to approximations.
However, the sampling period h is kept constant. This mode helps to evaluate the
advantage of only the approximation on the QOC. In QOC-optimal mode, both re-

4Note that this compute-centric approach has no impact on the data transfer traffic as the degree of
lossy compression performed in the JPEG encoder post-ISP is fixed to the minimum.
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Figure 6.7: Two LKAS operational modes considered in this work: approximation-only and
QOC-optimal. The fully accurate mode is shown as a reference to compare the
two modes.

duced sensing-to-actuation delay τ as well as reduced sampling period h are con-
sidered. This allows a higher number of frames to be processed over the same
tET W .

6.5.4 Quality metrics

Image quality degradation due to Optim 1 and Optim 2 is evaluated using the struc-
tural similarity (SSIM) index. The index for two images m, n is defined as:

SSI M(m,n) = (2µmµn +C1)(2σmn +C2)

(µ2
m +µ2

n +C1)(σ2
m +σ2

n +C2)

where µm , µn , σm , σn and σmn are the local means, standard deviations, and
cross-covariance for images m, n. C1, C2 are constants. High structural similar-
ity (SSIM) loss denotes images with higher visual difference. QOC evaluation of
the proposed IBC system is performed using the metrics settling time (ST) (as ex-
plained in Section 4.2.2), power spectral density (PSD), maximum control effort
(MCE) (as explained in Section 5.4) and mean absolute error (MAE) (as defined
below). These metrics consider both control performance and control energy.
Mean absolute error (MAE): mean of the cumulative sum of absolute errors, i.e.

M AE = 1

n

n∑
i=1

|y[k]− rr e f |
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where n is the no. of samples and y[k] is the value of the k th output. A lower MAE
implies a better QOC.

For all evaluations, we consider the following as defaults, unless otherwise
mentioned: (a) Platform Config: CPU_8C + GPU (see Fig. 6.4 (a)) (b) Scenario:
day.

6.6 Compute- & data-centric approximations

In this section, we evaluate the impact of approximations on the QOC and memory
of LKAS. First, we explain the scheduling of approximate ISP pipelines on GPU.
Then, we perform both compute-centric and data-centric approximations.

6.6.1 Scheduling of approximate ISP pipelines on GPU
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Figure 6.8: GPU schedules obtained for the different pipelines.
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Figure 6.9: Improvements in runtime from coarse-grained ISP approximation.

Execution time of different ISP pipeline settings depends on how they are
scheduled on the GPU. To generate optimized schedules, we use the Halide GPU
auto-scheduler proposed in [118]. The cost function of this auto-scheduler op-
timizes a pipeline by splitting it into groups/segments so that each segment can
be executed with accesses to the GPU shared memory only. Also, each segment
corresponds to a different CUDA kernel. When moving from one segment to an-
other, we need accesses to the global memory. It should be noted that accesses to
the global memory are orders of magnitude more costly compared to the ones to
shared memory since DRAM bandwidth is often much lower than the bandwidth
achieved by shared memory [118]. That’s why the execution time of these pipeline
settings highly depends on the number of global memory accesses.

We consider nine different pipeline settings, S0-S8. S0 is the fully accurate ISP
pipeline; the other eight pipelines are approximated by skipping various stages,
as further elaborated in the following subsection. Fig. 6.8 shows the GPU sched-
ules we obtain for the different pipeline settings using the auto-scheduler [118].
For splitting the pipelines into segments, the auto-scheduler starts from the out-
put stage and continuously merges it with the previous stages as long as the data
can be fit into the shared memory. If not, then it splits the pipeline into two seg-
ments and starts the same process again in the non-visited segment. The following
observations are made from the schedules:

• Gamut mapping (GM) and tone mapping (TM) cannot be put into a single
segment as the data cannot fit in shared memory. So, TM is put in a separate
segment in S0-S2.

• The output of demosaicing (DM) has a high memory footprint. So, DM can-
not be put in a single segment with the subsequent stages. This results in a
separate segment for DM in S0-S8.

• The auto-scheduler prioritizes inlining of cascaded stages (within a seg-
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ment) into the consumer, which maximizes producer-consumer locality.

Fig. 6.9 shows the runtimes of the eight pipeline settings. We observe from Fig.
6.8, that settings S0-S2 have three segments/groups accessing the global memory
while the rest, S3-S8, has two segments/groups accessing the global memory. This
explains the higher execution time of S0-S2 compared to S3-S8 in Fig. 6.9. This also
explains why S3 and S4 (each with four stages) take the same time as S5-S8 (each
with two stages). Also, the execution time does not scale linearly with the number
of stages in the pipeline, which explains why all of S5-S8 combined seems to take
less time than S0 (or S1 and S2) despite having more stages (as DM is common to
all of them). It should be noted that the slight runtime variations in S0-S2 are due
to extra thread synchronization overheads introduced by intra-segment commu-
nication through shared memories. The same reasoning applies to S3-S8.

Table 6.2: Coarse-Grained Approximation Settings in Optim 1.

Setting ISP Stages Description

S0 DM, DN, CM, GM, TM Accurate (all stages
included)

S1 DM, CM, GM, TM Skip Denoising

S2 DM, DN, GM, TM Skip Color Mapping

S3 DM, DN, CM, TM Skip Gamut Mapping

S4 DM, DN, CM, GM Skip Tone Mapping

S5 DM, DN Keep only Denoising

S6 DM, CM Keep only Color Mapping

S7 DM, GM Keep only Gamut Mapping

S8 DM, TM Keep only Tone Mapping

DM: Demosaic, DN: Denoise, CM: Color Mapping,
GM: Gamut Mapping, TM: Tone Mapping
Note: We refer to S0 as the accurate setting as no stages are skipped. In
the other (approximate) settings, S1-S8, certain stages are skipped.

6.6.2 Optim 1: coarse-grained ISP approximations

As mentioned, the ISP is approximated in a coarse-grained manner by skipping
one or more sub-stages within the pipeline (see Fig. 6.3 (a)). Testing all possible
combinations for skipping sub-stages is not feasible due to high compute over-
heads. So, for our analysis, we consider nine different approximation settings, as
shown in Table 6.2. Settings S1-S4 are obtained by skipping one stage at a time,
while settings S5-S8 are obtained by keeping one stage and disabling the rest of
the pipeline. It is noticed that skipping the DM stage results in an LKAS failure.
This is because PR algorithms operate in the RGB domain and they do not work
for the Bayer domain. So, DM is essential for proper LKAS operation. Additionally,
it needs to be mentioned that certain approximation settings initially led to LKAS
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Figure 6.10: QOC compared with image quality for different approximation settings. LKAS
is operated in approximation-only mode with default settings (Section 6.5.4).

failure. Minor modifications to the PR stage to handle these errors made it working
(as further explained in Section 6.6.4).

Skipping one or more sub-stages in the ISP has both positive and negative im-
pacts on the QOC of LKAS. The loss in image quality due to approximation settings
(S1-S8) may degrade the QOC. However, the reduced sensing-to-actuation delay
(τ) allows faster sampling of the controller, thereby improving the QOC. Balanc-
ing this interaction is essential in determining if we gain or lose in final QOC. We
evaluate the former by operating LKAS in approximation-only mode (without con-
sidering faster sampling) and the latter by operating LKAS in QOC-optimal mode
(considering faster sampling).

Fig. 6.10 shows a comparison between image degradation and QOC of LKAS.
The QOC metrics (MAE, ST, MCE and PSD) on the left x-axis are normalized to the
accurate setting (S0). The SSIM loss (right y-axis) shows the degree of image degra-
dation. First, it is evident that the different settings (S1-S8) have varying impact on
image quality. S1 (skipping denoising DN) performs the worst in terms of both im-
age quality and QOC. We conclude that skipping DN while keeping the rest of the
stages (S1) is not a suitable candidate for getting better QOC. We also observe that
some settings (S3, S4, S5, S7, S8) perform relatively similar to the baseline. This
shows that ISP pipelines optimized for human vision are overkill for LKAS. There
is no one-to-one correlation between image degradation and QOC. For instance,
settings S4, S5 and S7 have high SSIM loss (more degradation) but they perform
similar to S0 in terms of QOC, with S4 being slightly better. Contrarily, S2 has low
SSIM loss but high MAE (worse QOC). This is explained by the fact that the per-
formance of control algorithms depends on the presence of an essential feature
in the image (lane markings in this case). Image-degradation metrics like SSIM
loss fail to identify this. This non-correlation shows that approximating different



6

6.6 Compute- & data-centric approximations 153

S1 S2 S3 S4 S5 S6 S7 S80.0

0.5

1.0

1.5

2.0

2.5
Qo

C n
or

m

lower is better (QoCS0 = 1)

Approximation Settings in Optim 1

QoCnorm(S0) MAE ST MCE PSD

Figure 6.11: QOC improvements with reduced sampling period. LKAS is operated in QOC-
optimal mode with default settings.

subsystems individually without considering the impact on the bigger closed-loop
system can lead to sub-optimal results.

Fig. 6.9 shows that lowered compute workloads due to approximations (S1-S8)
result in up to 76% reduction (S5) in the sensing-to-actuation delay (τ). This allows
faster sampling of the controller. This is taken into account in Fig. 6.11 that shows
the QOC for the nine pipeline settings. We observe a significant impact of reduced
sampling period on the QOC. Faster control sampling in S3-S8 due to reduced τ

overshadows the negative impact of image degradation on QOC. We observe up to
63% (S7), 35% (S4), 10% (S8), 40% (S8) improvements in MAE, ST, MCE and PSD
respectively. However, in settings S1 and S2, the minor reductions in τ do not allow
a faster sampling. So, the negative impact of image degradation is not balanced,
resulting in worsened QOC. From Fig. 6.10, we observe that skipping only gamut
mapping (S3) and keeping only gamut mapping (S7) have opposite impacts on the
visual quality of the image. However, both S3 and S7 have minimal effects on the
essential features (lane markings) of the image [21]. This is evident in Fig. 6.11
where both settings S3 and S7 perform similarly in terms of QOC (0.38 and 0.36
respectively) with S7 being slightly better than S3. Fig. 6.12(a) reports the memory
improvements in LKAS due to Optim 1. Up to 69% reduction (S5) in memory traffic
is obtained from Optim 1.

6.6.3 Optim 2: lossy compression using variable Q-parameter

As a next step, we vary the Q-parameter in the JPEG algorithm to control the de-
gree of lossy compression to reduce the off-chip memory traffic. In the evalua-
tion of Optim 1, a fixed Q-parameter (= 100) was considered. For Optim 2, the
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Figure 6.12: Memory traffic reductions

Q-parameter is modulated in fixed steps from Q10 to Q90 in addition to Q100. Fig.
6.12(b) shows the off-chip memory traffic reduction for the different approxima-
tion settings while varying the Q-parameter. All values are normalized to S0Optim 1.
S5 is the most memory-efficient setting across all Q-parameters. For S5, addi-
tional memory reductions of up to 81% (Q10) are obtained over Optim 1. How-
ever, these reductions come at a cost; they introduce more noise to the system.
To gain on QOC for the entire system, there must be significant runtime reduc-
tions in τ to allow for faster control sampling. We observe that for lower values of
Q (Q < 70), the additional runtime reductions are insignificant (see Fig. 6.12(b)).
Lower Q-parameter values lead to more aggressive quantization during compres-
sion. However, for smaller pixel values (more common in approximated images),
values are rounded to zero resulting in no additional reduction in memory traffic,
and thereby no runtime improvements. So, we consider only higher values of Q (≥
70).

6.6.4 Interstage effects of approximations

It is observed that both the coarse-grained approximations in Optim 1 and the
lossy compression in Optim 2, have a quality impact on the subsequent stages,
especially the PR stage. However, the impact of Optim 1 on the PR stage is critical,
as it results in LKAS failure in some cases. The PR stage does not detect the lanes
properly for certain approximated streams obtained from S1-S8. The problem is
traced back to the static image thresholding step in PR (see Fig. 6.3 (b)), which fails
to identify the lane markers from the grayscale bird’s eye view image due to in-
correct choice of threshold. To counter this, Otsu’s binarization algorithm is used,
which dynamically identifies the optimal threshold. Otsu’s algorithm brings an ad-
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ditional computational complexity of M N +7L2+5L−12, for an M ×N image with
L grey levels. Depending on the approximation settings, dynamic thresholding is
either performed on the grayscale bird’s eye view image or RGB bird’s eye view im-
age. This results in desired LKAS behaviour across all approximation settings. It
is noted that performing dynamic thresholding on the RGB image has thrice the
computational complexity, which has been taken into account in our evaluation
results.

6.7 Optim 3: Approximation-aware control design

To design a controller that is robust against approximation errors, we quantify the
errors introduced due to coarse-grained approximations as well as variable lossy
compression and use it to design an approximation-aware controller. Initially, we
need to identify the system state parameter(s) affected by the approximations. For
LKAS, the lateral deviation yL is affected by approximation. We quantify the error
(ei ) due to approximation for the setting Si as the covariance of the calculated y i

L
for the approximation setting Si with respect to the calculated y0

L for the accurate

setting S0, i.e., ei = 1
n

∑n
j=1(y i

L j
− y0

L j
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Figure 6.13: QOC-Energy trade-offs for Optim 3. Pareto-front improvements over Optim 1
and Optim 2 are shown. Note that the energy here is a measure of the degree
of approximation in the approximation-only mode. The lower the energy, the
higher the degree of approximation. The reader is referred to [36] for more de-
tails on the energy-aware optimisation.

We use the optimal LQG control design [48] technique to design the
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approximation-aware controller for the system defined as follows:

ẋ(t ) = Ac x(t )+Bc u(t ),

y(t ) =Cc x(t )+ei ,

where ei models the error due to approximation as measurement noise for the
output.

Fig. 6.13 shows the QOC-Energy trade-offs for Optim 3, approximation-aware
LQG control, for the LKAS case study. Recall from Section 6.4.2 that the results
so far were obtained by using an LQR controller. The control error of the LQR
controllers for the various pipeline settings was quantified as explained above and
used to design an LQG controller for each setting. We observe that the area un-
der the Pareto curve for Optim 3 improves by 22% and 15% over Optim 1 and 2,
respectively. This means that better trade-offs in terms of QOC and energy are
obtained by the LQG controllers. It is important to mention that Optim 3 has
QOC improvements over Optim 2 but no energy improvements, as it does not
influence the compute-intensive sensing stage (S). This explains why the Pareto
front only moves towards the left. Finally, the improvements from Optim 3 in
approximation-only mode are higher than in QOC-optimal mode. This is because,
in approximation-only mode, faster sampling is not considered. So, control deci-
sions at each actuation are valid longer. So, better decisions taken by the LQG con-
troller are more profound in approximation-only mode compared to QOC-optimal
mode.

6.8 Approximation and mapping interplay
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Figure 6.14: Different platform configurations considered in addition to Fig. 6.4 (a).

In Sections 6.6 and 6.7, we mapped all the approximate tasks to a default
(CPU_8C+GPU) platform configuration (see Fig. 6.4 (a)). Mapping tasks to a GPU
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has runtime benefits, but it is extremely power hungry. The number of CPUs on-
line in the NVIDIA AGX Xavier platform is controlled using software-controlled
power gating. We use this to introduce three new platform configurations (CPU_-
1C, CPU_4C, CPU_8C) in Fig. 6.14. We report our mapping results considering
design points obtained by combined application of Optim 1, 2, and 3.
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Figure 6.15: Comparative analysis of the runtime implications of the different platform
mappings for all approximation settings S0-S8.

Fig. 6.15 shows a snapshot for the timing implications of different task map-
pings for all approximate settings S0-S8. Sensing-to-actuation delays τ are shown
on the y-axis. We have observed in our experiments that for proper LKAS oper-
ation at a vehicle speed of 50 kmph, a controller sampling period ≤ 125 ms is re-
quired. So, mapping the accurate setting S0 to CPU_1C or CPU_4C results in a
vehicle crash. However, mapping approximate settings S3, S5, S6 and S8 to CPU_-
1C and CPU_4C results in desired LKAS behaviour (in QOC-optimal mode). As
mentioned earlier, a minimum frame rate of 8 fps (period ≤ 125 ms) is required for
proper LKAS operation. In approximation-only mode, for each mapping, settings
S1-S8 operate at the same frame rate as S0 of the corresponding mapping. Thus,
all the settings result in LKAS failure for CPU_1C and CPU_4C. In QOC-Optimal
mode, settings S3, S5, S6, S8 mapped to CPU_1C and CPU_4C result in desired be-
haviour due to improved sampling period. These results show that approximation
enlarges the design space substantially, allowing the developer to find an appro-
priate balance between QOC, resource usage, and energy cost.
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6.9 Sensitivity to environmental scenarios

IBC systems operate under different environmental scenarios. In this section, we
evaluate the impact of approximation noise on IBC performance when operating
under these scenarios. Fig. 6.16 shows the six different environmental scenarios
considered for our evaluation. These are commonly encountered driving condi-
tions relevant for LKAS.

day night dawn

dusk fog snow

Figure 6.16: Different environmental scenarios considered in this work. The figures are ob-
tained from the IMACS framework.
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Figure 6.17: Sensitivity of QOC to different approximation settings operating under different
environmental scenarios. Results are for Optim 1.

Fig. 6.17 shows the QOC sensitivity for LKAS to approximation settings (S0-S8)
when operated under different environmental scenarios. All values are normal-
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Figure 6.18: QOC improvements due to cross-layer optimizations (Optim 1, 2, 3)
across different environmental scenarios.

ized to the S0 QOC (baseline). It is observed that the choice of approximation
(S1-S8) is critical for better QOC. To get the best QOC, different approximation
settings should be chosen based on the environmental scenario (grey markings
in Fig. 6.17). S1 (skipping denoising) fails for night, dawn and dusk, while it per-
forms worse than the baseline for the other scenarios. Similarly, S2 (skipping color
map) performs worse than the baseline across all scenarios. This can be explained
by the fact thatvthe sampling period for these cases is not improved compared
to S0, while the added extra error makes the QOC worse. It is also observed that
none of the approximation settings (S1-S8) improves over the baseline when op-
erating in a snowy scenario. Settings S5, S7 and S8 lead to LKAS failure for this
case. This is due to the lack of significant difference in pixel intensity between the
lane markings and the road region. From this, we can conclude that the impact
of approximation error on LKAS performance is highly sensitive to the operating
environment. Dynamic selection of the approximation setting by recognizing the
operating environmental scenario is required.

Fig. 6.18 shows the impact of the cross-layer optimizations on QOC for differ-
ent scenarios. All the values are normalized to S0 for the corresponding scenario.
For this analysis, we choose only the settings that give the best QOC per scenario
in Fig. 6.17. Firstly, there is no improvement over S0 for snow as none of the ap-
proximation settings perform better than the baseline as explained earlier. For all
other scenarios, Optim 1 gives QOC improvements over S0. For dawn, dusk and
fog, we see no/minor incremental QOC improvements when we apply Optim 2
and 3 on top of Optim 1. This is because these are challenging cases for proper
dynamic thresholding in the PR stage. When we add extra noise due to lossy com-
pression, the performance of dynamic thresholding worsens. In case of dawn and
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fog, the reduced τ due to Optim 2 and the approximation-aware controller of Op-
tim 3 overpower the impact of worsened PR and we get slight QOC improvements
over Optim 1. However, this is not the case in the dusk. Also, we observe higher
QOC improvements for the night compared to the day. This is because, for the
night, there is a higher difference in intensity between lane pixels and road pix-
els, compared to that of the day scenario. This results in a better PR performance,
thus, larger QOC improvements.

We considered six different environmental scenarios most relevant to LKAS. It
is worth noting that our approach is applicable to a combination of these scenar-
ios as well. For instance, a segment of road with multiple tunnels can be handled
by dynamically switching from a day to a night scenario and vice versa. Dynamic
adaptation to environmental scenarios fits seamlessly in the SPADE design philos-
ophy that is already scenario-driven.

6.10 Robustness of approximate IBC

IBC systems as considered in this work are safety-critical. This requires a robust-
ness study when such a system is subjected to approximations. To this end, we
evaluate the failure probability of LKAS when subjected to different approximate
settings (S1-S8). First, we perform Monte-Carlo simulations of the entire system
while taking into account different approximate settings and environmental sce-
narios. Then, we obtain the percentage of lane misprediction and closed-loop fail-
ure probability of LKAS.

6.10.1 Monte-Carlo simulation

For Monte-Carlo simulation, we sweep different LKAS parameters in Webots using
the HIL setup (Section 6.3) and obtain various system models for simulation. The
considered parameters are initial starting position or initial lateral deviation of the
vehicle, different weather conditions and different road surface types. From these
simulations, the camera frames obtained by driving the vehicle are extracted and
stored as a dataset for further analysis. For each frame in the dataset, the lane
markings are annotated as ground truth (information extracted from the accurate
image).

6.10.2 Lane misprediction (LM)

Correct lane prediction is essential for proper LKAS operation. So, in this analysis,
we study the sensitivity of the PR stage to different approximate settings by calcu-
lating the increase in lane misprediction (LM) compared to the predictions using
the ground truth. We use the dataset obtained using Monte-Carlo simulations.
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Lane misprediction (LM) is calculated as shown below [134]:

LM = 1− 1

n

n∑
i=1

PLi

Gi

where PLi is the number of correctly predicted lane points per frame and Gi is
the number of ground truth points per frame. A prediction is considered correct
if the difference between a ground truth point and the predicted point is less than
a certain threshold. n is the total number of frames considered. In this work, Gi

= 512 and n = 3000. Fig. 6.19 shows that the PR stage is robust to errors from ap-
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Figure 6.19: Sensitivity of PR to different approximate settings when operating un-
der different environmental scenarios. The average LM for each set-
ting across all scenarios is shown in red.

proximation settings S2-S7 with average LM ≤ 1%. We also see that image frames
subjected to approximate settings S4-S7 have high visual changes (Fig. 6.10) com-
pared to the accurate one, but they still have low LM. This is because essential lane
markings are not affected by these visual changes. Skipping denoising (S1) has a
high negative impact on lane detection (PR) with average LM = 11.7%. Thus, skip-
ping denoising (S1) while keeping the rest of the stages is not suitable for proper
LKAS performance. We also observe that keeping only tone mapping (S8) works
for all scenarios except snow (LM= 18%) which shows that scenario-based approx-
imation selection is needed.

6.10.3 Failure probability (FP)

From the results of the previous subsection, we determine the worst-case approxi-
mation error (Section 6.7) per setting considering the scenario with the highest LM
for that setting. This error is used for designing different LQG designs for FP ana-
lysis. We then calculate the failure probability of LKAS for different approximate
settings (S1-S8) using Monte-Carlo simulations of the entire system. There are two
questions that we need to address here: (a) Is the designed controller stable and
robust? (b) Is there LKAS failure, i.e, does the vehicle go out of the lane?
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To evaluate stability robustness of the designed LQG controller, we calculate
the stability radius (r ) which is the radius of the largest ball centered at the (−1,0)
point to loop transfer function of the system in the nyquist plot [75]. r is calculated
as follows:

r = 1

||S||∞
where S is the sensitivity function calculated at the output of PR for the pro-

posed LKAS model and 0 ≤ r ≤ 1. A higher value of r means more stability robust-
ness to sensor noise. The r values obtained for S0-S8 are 0.8787, 0.9800, 0.9129,
0.9906, 0.9900, 0.9982, 0.9898, 0.9982 and 0.9999, respectively. All the r values are
close to 1, which shows the stability of the designed LQG controllers. It is noted
that the r values for the approximate settings (S1-S8) are higher than the accurate
(S0) one. This means that for the approximate cases, the LQG contoller is designed
to sustain a higher sensor noise margin. This has impact on the LQG performance
when evaluated in terms of FP.

Failure probability of the LKAS is calculated as shown below:

F Pper km = 1

m × l

m∑
i=1

Fi

where Fi is 1 if the number of times the vehicle goes out of the lane markings
during the simulation interval is one or more; otherwise, it is 0. m is the number of
Monte-Carlo simulations performed for each approximate setting. For our experi-
ments, we consider m = 50000. l is the lifetime of the vehicle. The typical lifetime
of a conventional vehicle is 150,000 mi or 241,401.6 km [17].
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Figure 6.20: Failure probability of LKAS for different approximate settings when
operating under different environmental scenarios. Failure probabil-
ity of the best performing setting per scenario is highlighted in red.

Fig. 6.20 shows the FP of LKAS for different approximate settings under differ-
ent environmental scenarios. To get some perspective, we plot the F Pper km in the
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Figure 6.21: Comparative study showing LKAS performance (QOC) versus failure
probability for the different approximate settings when operating un-
der different environmental scenarios.

hardware and the communication subsystems of the vehicle as reported in [17].
We notice that approximate settings S2, S3, S4 and S6 have a low failure proba-
bility across all scenarios. Considering the best performing (QOCbest ) setting per
scenario, we notice that the system has worst-case F Pper km of 9.6 × 10−6% (S3
for the night) which is well below the failure probabilities of the hardware and the
communication subsystems 5.

Considering FP in a standalone manner paints a partial picture. We are more
interested in designs which not only have low FP but also perform better than the
accurate setting (S0). Fig. 6.21 shows this comparative study between LKAS per-
formance (QOC) and F Pper km . QOC values are normalized to the baseline (S0)
for each scenario. S0 has the lowest FP as expected. We start by comparing the
four static approximate settings S2, S3, S4 and S6 which have low FP across all sce-
narios. We observe that S2 has the lowest average FP compared to S3, S4 and S6,
but its closed-loop QOC is worse than the baseline (S0) across all scenarios (see
Fig. 6.21, green dotted line). Statically choosing S3, S4 and S6 across all scenar-
ios shows improved QOC compared to baseline for some scenarios and degraded
QOC for others (see Fig. 6.21, blue, yellow and black dotted lines). This motivates,
as before, to dynamically select the approximate settings for each environmental
scenario, which results in either improved or the same QOC as that of the baseline
(S0). This is shown by the red dotted line in Fig. 6.21. Note that we choose (from

5Software, hardware and communication subsystems are responsible for the majority of the au-
tonomous vehicle failures related to vehicular components as reported in [17]. Approximations pro-
posed in this work contribute to software failure due to increased lane misprediction (LM). So, we re-
port our results along with failure contributions due to discrepancies in hardware and communication
subsystems to get a better perspective
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left to right on the red dotted line in Fig. 6.21) S6 for dawn, S7 for day, S3 for fog,
S7 for dusk, S3 for night and S0 for the snow environmental scenarios for the best
QOC. A detailed analysis and the impact of switching between these scenarios at
runtime is not in scope of this thesis. Interested readers are referred to [32].

The FP, in the scope of this chapter on approximation, may be used as a cut-
off criterion for choosing the acceptable (Pareto-optimal) approximate settings for
different environmental scenarios at runtime. From Fig. 6.20, we can observe that
most settings for different scenarios satisfy the cut-off criteria FPCOM M and FPHW

from the literature. All the approximate settings that satisfy the FP criteria can be
deployed at runtime. The next criterion for choosing the Pareto-optimal approxi-
mate setting for a particular environment scenario is then the QOC. The outcomes
after the FP analysis from Fig. 6.21 are the same as the results in Section 6.9 (as
illustrated in Fig. 6.18. This is as expected, given that the FP shows that all the op-
timal settings found in Section 6.9 satisfy the FP cut-off criterion. Note that in Fig.
6.21, the setting S3 has the lowest FP for the day scenario, lower than setting S7.
Since both S3 and S7 can be deployed at runtime due to low LM, we choose S7 that
has a better QOC compared to S3 for the day scenario.

6.11 Discussions

In this section, we provide a summary and give insights on some key aspects of our
design approach in terms of dynamic configuration overheads, and applicability
in safety-critical systems. We also discuss the generality as well as the modularity
of our design approach while highlighting the ease of switching to newer design
models.

6.11.1 Result summary and insights

In this section, we summarize the results presented in this chapter, looking from
two different perspectives: (a) exploiting error-resilience in IBC systems and (b)
sensitivity and robustness. A detailed list of parameters, optimizations and simu-
lation settings considered for evaluation of our results is shown in Table 6.3.
Exploiting error-resilience in IBC systems: IBC systems like LKAS have intrinsic
error resilience and visual quality is not paramount for such applications. We ex-
ploit this by performing coarse-grained computation skipping in the ISP as well
as variable lossy compression post-ISP. This significantly reduces the sensing-to-
actuation delay τ at the cost of loss in image quality. Reduced τ enables faster sam-
pling of the controller which not only negates the negative impact of image degra-
dation on QOC but in turn improves QOC as shown in Sections 6.6.2 and 6.6.3.
We model this error as sensor noise in the approximation-aware LQG controller,
which improves the overall QOC further as shown in Section 6.7. Reduced com-
pute workloads due to approximate ISP and a higher degree of lossy compression
gives significant memory improvement as well. In approximation-only mode, we
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obtain 88% reduction in memory footprint and 44% improvements in QOC com-
pared to accurate implementation (see Fig. 6.12(b), S6 in Q90). In QOC-optimal
mode, we obtain 78% improvements in QOC and 89% reduction in memory foot-
print (see Fig. 6.12(b), S7 in Q90).

Table 6.3: Summarizing details of evaluation parameters considered.

Sec. Optimizations
Considered

Platform
Mappings

Environmental
Scenarios

Controller
Type

6.6.2 Optim 1 CPU_-
8C+GPU

day LQR

6.6.3 Optim 1 + 2 CPU_-
8C+GPU

day LQR

6.7 Optim 1 + 2 + 3 CPU_-
8C+GPU

day LQG*

CPU_-
8C+GPU

6.8 Optim 1 + 2 + 3 CPU_8C day LQG*

CPU_4C

CPU_1C

CPU_ day, night

6.9 Optim 1 + 2 + 3 8C+GPU dawn, dusk LQG*

fog, snow

CPU_ day, night

6.10 Optim 1 + 2 + 3 8C+GPU dawn, dusk LQG*

fog, snow

Optim 1: ISP approximation settings S0-S8
Optim 2: Variable lossy compression Platform: NVIDIA AGX Xavier
Optim 3: Approximation-aware control
Webots Settings: Sensor images resolution = 720p (with downsampling to

512 × 256), camera frame rate between 30fps, 60fps and 120fps, depending
on the sampling period of controller, initial vehicle position = 15 cm from
lane center, lane width = 3.25 m, webots simulation step = 1 ms, vehicle
speed = 50 km/hr.
LQR: linear quadratic regulator, LQG: linear-quadratic-Gaussian
* Approximation-aware control

Sensitivity and robustness: For proper in-field deployment of approximate IBC
systems, a wide range of commonly encountered environmental scenarios are
tested in Section 6.9. It is observed that the choice of approximation is critical
and different approximation settings should be chosen for different scenarios to
get the best performance (see Fig. 6.17, 6.18). However, the goal is not only to get
the best performance per scenario but also to design a robust IBC system with a
low FP as explored in Section 6.10. We observe that settings S2, S3, S4 and S6 have
a low FP across all scenarios (see Fig. 6.20). However, statically choosing S2, S3, S4
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or S6 does not give us the best performance and motivates dynamically switching
between settings based on the operating scenario (see Fig. 6.21).

Summing it all up, we observe that choosing S7 for day & dusk, S3 for night &
fog, S6 for dawn and S0 for snow gives us the best balance between performance
and robustness (see Fig. 6.21). For this solution, we obtain average improvements
of 51% in QOC, and 83% in memory, with the worst-case FP (per km) of 9.6 ×
10−6%. Thus, our design approach provides robust approximate IBC designs (with
FP below those of the hardware and communication subsystems) with significant
QOC and memory improvements.

6.11.2 Overhead of dynamic approximation selection

In Sections 6.9 and Section 6.10, we highlight the benefits of dynamic selection of
approximation settings for different environmental scenarios. In this section, we
discuss the additional overheads of such an approach. First, we classify the dif-
ferent environmental scenarios using a state-of-the-art convolutional neural net-
work (CNN) classifier, ResNet-50 [58]. ResNet-50 has a classification accuracy of
94.75% on the ImageNet 2012 classification dataset that consists of 1000 classes
with 1.28 million training images, 50k validation images and 100k test images [58].
We choose ResNet-50 pre-trained on ImageNet and train it on our dataset (see Sec-
tion 6.10) using transfer learning. On our dataset, it achieves a classification accu-
racy of 99.72%. The higher classification accuracy is due to the fewer number of
output classes compared to ImageNet (six in this work). ResNet-50 has a runtime
penalty of 1.5 ms on the NVIDIA AGX Xavier [61], which is 6% of the overall runtime
of LKAS (considering S0).

The proposed scenario classifier is invoked every frame to perform classifica-
tion (every 25 ms for S0-S2, every 8.3 ms for S3-S8). But in real driving conditions,
the transition between different weather scenarios is less frequent. So, we believe
that the frequency at which the scenario classifier is invoked can be relaxed, thus,
reducing the overhead of dynamic selection. Investigating this is out of the scope
of this work. Moreover, the runtime overhead of the scenario classifier can be re-
duced by performing latency hiding. The scenario classifier can be scheduled on
the DLA in parallel with the PR stage to get a lower sensor-to-actuation delay (τ).

6.11.3 Approximations in safety-critical systems

We consider a LKAS, which is a safety-critical system. Approximations are not in-
tuitive solutions in safety-critical systems. But recent efforts like NVIDIA Pilot-
Net [18, 19] and LaneNet [96] have shown that neural network-based algorithmic
approximation approaches can be used for safety-critical systems. In this work,
we show that compute- and data-centric approximation approaches can be ap-
plied to a safety-critical system like LKAS when it comes with in-depth analysis
and proper evaluation of the system-level QOC and FP. We show that the quality
of the overall system improves despite errors being introduced in the intermediate
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sub-systems. Additionally, failure probability analysis of the approximate system
shows that failure rates are bounded within acceptable limits [17].

6.11.4 Generality and modularity

Generality: The proposed work applies to any feedback control system with
camera-based sensing. These systems have massive compute workload, which
can be reduced by approximating the sensing stage, as shown in this work. In
essence, approximations improve the timing and memory simultaneously at the
cost of sensor noise. However, this additional sensor noise can be tolerated due to
the inherent error resilience of closed-loop IBC systems, thus, improving the over-
all QOC. Although the gains reported in this work are application- and platform-
specific, the general idea is applicable to other IBC systems [16] like automatic
pedestrian detection, vision-based predictive suspension systems and so on.
Modularity: This work demonstrates that approximating the compute-intensive
sensing stage (S) in an IBC system provides significant QOC and memory benefits.
Computation-skipping is explored in this work, which is one of the potential solu-
tions for approximating S. Other techniques such as deep neural network (DNN)
models can also be explored in future for replacing these compute-intensive sens-
ing stages. They can be applied to replace either the ISP stage [62] or the PR stage
[96] or both. To easily facilitate model changes, we have developed our framework
in a modular fashion. DNNs can be approximated through quantization, prun-
ing and other standard DNN optimisation techniques [85]. To integrate DNN-
based approximation in our framework, we just need the execution time of the
DNN model (in inference mode) on the considered hardware platform/inference
engine. This parameter is used for designing approximation-aware control.

6.12 Conclusions

We have shown that compute-centric (ISP stage skipping) and data-centric (vari-
able lossy compression) approximations are promising strategies for simultane-
ously optimizing QOC and memory usage of IBC systems. We have shown with ex-
tensive experiments that approximation-aware control designs are suitable when
we take into account the artefacts of approximation in closed-loop systems while
optimizing for QOC. Our design approach is shown to be applicable to a wide range
of environmental scenarios. The best results are obtained when switching between
different controller configurations (system scenarios) when environmental condi-
tions change. We have also shown that approximate IBC systems designed using
our approach are robust with a failure probability (FP per km) of 9.6 × 10−6%. The
presented approximation approach is shown to have high potential in a LKAS. Ap-
proximating the sensing task is complementary to the parallelisation and pipelin-
ing discussed in earlier chapters. The dynamic switching between environmental
scenarios fits well in the scenario-based SPADE approach.
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Conclusions and Future Work

Multiprocessor image-based control (IBC) systems will only become more promi-
nent and visible in the upcoming future. The prime driving factors for adopting
multiprocessor IBC systems are the advances in the semiconductor industry, and
the ease and necessity of connectivity, e.g., using 5G (and even 6G), for the mod-
ern industrial systems, devices and utilities. The advances in the semiconduc-
tor industry are driving down the price and size (form factor) of multiprocessors
and high quality complementary metal–oxide semiconductor (CMOS) cameras. A
connected world improves the overall efficiency and productivity of modern sys-
tems and the connected humans. Seamless connectivity enables data-intensive
processing in the cloud and allows the integration of camera sensors as edge de-
vices in modern industrial systems. A camera can sense multiple physical param-
eters and can be (re-)configured with only a software update. This thesis explores
how we can effectively optimise multiprocessor IBC systems implementation and
addresses some of the fundamental challenges with its adoption in industrial sys-
tems.

7.1 Conclusions

Multiprocessor IBC systems are a class of data-intensive feedback control systems
whose feedback is provided by image-based sensing using cameras as sensors and
implemented on a multiprocessor platform. Multiprocessor IBC systems have be-
come popular with the advent of efficient image-processing algorithms, low-cost
CMOS cameras with high resolution and low-cost multiprocessor platforms. The
combination of the camera and the image-processing algorithm gives necessary
information on parameters such as relative position, geometry, relative distance,
depth perception and tracking of the object-of-interest. This enables the effective
use of low-cost camera sensors to enable new functionality or replace expensive
sensors in cost-sensitive industries like automotive and automation. Applications
of multiprocessor IBC systems are found in robotics, autonomous vehicles, ad-
vanced driver assistance system (ADAS), electron microscopes, visual navigation
and so on.

The challenge, however, is that the image-processing algorithms are compute-
intensive and result in an inherent relatively long sensing delay. State-of-the-art

169
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design methods do not fully exploit the IBC system characteristics and advantages
of the multiprocessor platforms for optimising the sensing delay. The sensing de-
lay of an IBC system is moreover variable with a significant degree of variation
between the best-case and worst-case delay due to application-specific image-
processing workload variations and the impact of platform resources. A long vari-
able sensing delay degrades system performance and stability. A tight predictable
sensing delay is required to optimise the IBC system performance and to guaran-
tee the stability of the IBC system. Analytical computation of sensing delay is often
pessimistic due to image-dependent workload variations or challenging platform
timing analysis. Therefore, this thesis explores techniques to cope with the long
variable sensing delay by considering application-specific IBC system character-
istics and exploiting the benefits of the multiprocessor platforms. Effectively han-
dling the long variable sensing delay helps to optimise IBC system performance
while guaranteeing IBC system stability.

In the first contribution, the scenario- and platform-aware design (SPADE)
flow is proposed that relates the formal dataflow timing analysis with control tim-
ing parameters for the formal controller design. This thesis proposes the first
formal model-based design framework for the IBC system co-design that relates
dataflow analysis and controller design. The SPADE flow brings together dataflow
and control formalisms in the same framework. This relation allows to bring in
the optimisation techniques from the dataflow domain into the control timing pa-
rameter optimisation. The first contribution also examines the case of application
parallelism with no pipelining allowed for the control loop and thereby, reduces
the sensor-to-actuator delay and period of the resulting controller implementa-
tion. The proposed SPADE flow also makes a step forward towards real-life imple-
mentation by detailing how the flow can be adapted for industrial platforms. Both
academic and industrial platforms could implement the SPADE approach.

The second contribution integrates the parameters relevant for a practical
pipelined implementation. A pipelined implementation reduces the sampling pe-
riod while keeping the sensor-to-actuator delay constant. Inter-frame dependen-
cies are present in many modern computer-vision algorithms. Such algorithms,
when used in an IBC setting, require to model such algorithmic artefact at the con-
trol level. Moreover, system nonlinearities and constraints on system variables are
other common factors encountered in almost all real-life settings. This thesis ex-
plicitly considers application-specific inter-frame dependencies and their impact
on the controller implementation. This thesis presents a model-predictive control
(MPC) formulation for pipelined IBC systems considering workload variations,
inter-frame dependencies, system nonlinearities and constraints on system vari-
ables. This thesis, thus, makes a step towards a real-life pipelining implementation
for IBC systems.

The third contribution, in essence, brings together the advantages of the above
two contributions in the SPADE flow for pipelined parallelism. Pipelined paral-
lelism effectively reduces both the sampling period and sensor-to-actuator delay
while taking into account both the degree of application parallelism (determined
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by the algorithm and the given platform allocation) and the degree of pipelin-
ing (quantified by inter-frame dependencies and the given platform allocation).
An algorithm is detailed for the SPADE flow with modular blocks for binding
and scheduling, controller design and timing analysis. These blocks are modu-
lar as any state-of-the-art technique could be used instead of those used in this
thesis: i) the SDF3 tool for binding and scheduling; ii) the linear quadratic reg-
ulator (LQR), linear-quadratic-integral (LQI), linear-quadratic-Gaussian (LQG),
MPC, and Markovian jump linear system (MJLS) controller design techniques;
and iii) max-plus algebra for timing analysis. This thesis presents the required
model transformations for realizing SPADE using the scenario-aware dataflow
(SADF) model-of-computation (MOC). This thesis also details the adaptation of
the SPADE flow for industrial platforms for pipelined parallelism.

The fourth contribution explicitly takes into account the application-specific
workload variations and particularly considers the switching probabilities be-
tween the workload scenarios. Considering these workload variations and switch-
ing probabilities implies that we can reduce the average sensor-to-actuator delay
and the average sampling period of the controller implementation. In literature,
variable sensor-to-actuator delay (resulting from the variable workload) was dealt
with through switched linear controllers with either known or unknown sequences
of delay occurrences. These solutions either suffer from poor performance (from
unknown arbitrary delay sequences) or unrealistic assumptions (when knowledge
of the delay sequence is not available in reality). This thesis proposes an alternative
controller design method based on the MJLS formulation. The image-workload
variations are identified and modelled as a discrete-time Markov chain (DTMC),
where each Markov state represents a workload scenario. At runtime, the IBC sys-
tem switches between workload scenarios based on image workload. Having too
many switching workload scenarios results in an unstable system or degrades sys-
tem performance. This thesis thus proposes system-scenario identification that
abstracts multiple workload scenarios based on camera frame rate, sensing delay
and sampling period into system scenarios. The DTMC is then recomputed, con-
sidering only the system scenarios, and the controller is synthesised based on the
MJLS formulation.

The fifth contribution explores approximate computing as a means to reduce
the effective sensor-to-actuator delay and the sampling period. Approximate com-
puting trades off accuracy in the signal processing for gains in response time. Ap-
proximation is in that sense complementary to parallelizing and pipelining the
control loop. This thesis also presents the performance evaluation for IMAge-
based Control Systems (IMACS) framework for analysing and validating the im-
pact of injecting errors in the image processing on the closed-loop IBC system
performance. In addition, this thesis proposes an approximation-aware control
design that takes as input the quantified error due to approximation.

In conclusion, this thesis aims to efficiently cope with the long variable sensing
delay of IBC systems so that engineers can deploy IBC systems efficiently in time-
and safety-critical domains. An IBC system uses computer-vision algorithms for
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sensing and control laws and algorithms for control regulation. The performance
of the IBC system is dependent on the performance of both the sensing and con-
trol algorithms. The presented SPADE flow brings together two modeling and ana-
lysis paradigms in an integral way – the dataflow formalism and control theory. As
a means for optimization, both platform-specific aspects and application-specific
characteristics are considered in various contributions presented in this thesis.
This thesis also describes the way to adapt the SPADE flow for both custom-made
and industrial platforms, by considering several relevant design aspects such as
image-workload variations, inter-frame dependencies, system nonlinearities and
so on.

7.2 Future work

This thesis proposes the scenario- and platform-aware design for multiprocessor
IBC systems implementation for an efficient model-driven optimisation. There
are various ways to extend the SPADE flow for completeness and adoption in prac-
tice, which are interesting for future work. In the following, we present a few major
future directions.

• Automated model extraction: Extracting the application and platform mod-
els automatically from algorithmic descriptions of the application and a
given platform allocation is an important future direction to enable a wider
usage of formal model-based design and an analysis framework such as
SPADE. The model extraction is often tricky and error-prone in many real-
life scenarios. A model-based design approach thrives on the accuracy of
the inherent models. The current SPADE approach assumes that the appli-
cation graph and the platform graph are given or modelled by the designer.
An automated approach to extract these models for a given algorithmic im-
plementation and for a given platform allocation is helpful for adoptability
of the proposed model-based approaches in industry and avoiding manual
efforts/errors in the modelling.

• Analytical worst-case execution time (WCET) computation: The applica-
tion modelling in the SPADE flow using SADF requires the WCET of tasks
(actors in the SADF model). For industrial platforms, the WCET analysis of
tasks running on the platform is non-trivial. An adaptation of how runtime
profiling can be used for the proposed SPADE flow is detailed in this thesis.
The worst-case system scenario is identified (see Chapter 4) based on the
profiled WCET and may not be the actual WCET. Computing the analytical
WCET bound for tasks running on an industrial platform is hard and still an
open problem. A tighter WCET bound is a helpful addition for the industrial
adoption of the SPADE flow and can potentially improve the performance
of the overall design. An exact WCET bound, typically obtained from pre-
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dictable platforms, can maximise the system performance when using the
SPADE approach.

• Scalablility: Scalability of the current SPADE flow is dependent on the SADF
analysis and mapping (using the SDF3 tool in this thesis). As the size of the
input SADF model grows, state-space explosion may be encountered dur-
ing the analysis and mapping depending on the algorithms used for sens-
ing. In particular, a meaningful addition to the framework is the ability to
handle and treat deep neural networks (DNNs)-based sensing as an alter-
native to classical computer-vision algorithms used in this thesis. Given the
wide-spread use of DNNs in various domains these days, it is a natural step
forward where the challenge of long processing (inference) latency is even
more valid. Typically, DNNs are huge and using them directly in the dataflow
analysis is challenging and may lead to state-space explosion. A possible di-
rection of future work is to consider optimisation techniques for dataflow
analysis and mapping with constraints on latency of the SADF model along
with the throughput-constraint, i.e., latency- and throughput-aware binding
and scheduling.

• Code generation: The SPADE flow does currently not offer a code-
generation capability. An industrial model-based design flow typically ex-
pects code-generation functionality to be embedded within the framework.
Integrating a code-generation capability for the implementation is another
interesting and useful direction for future work.

In addition, the following future directions would make the SPADE flow more
complete without adding fundamentally new features.

• A SPADE adaptation for data-/compute-intensive control compute tasks
(e.g., a compute-intensive MPC or path planning) is another interesting di-
rection to explore for future work. In this thesis, the assumption is that the
control compute and actuation tasks are not compute-intensive. Another
implicit assumption is that the sensing task output is available before the
control compute task can start. A compute-intensive control task implies
that we can parallelise the control task and potentially even pipeline its exe-
cution. For a non-pipelined implementation, the sensing and control tasks
are sequential and hence the compute-intensive control compute task re-
sults in longer delays and optimal control strategies are required for address-
ing the longer delay. For a pipelined implementation, the SPADE flow con-
siders a constant sampling period and as fast as possible sensing. In this
choice of control design, the control compute task uses the latest sensing
data available at the start of its execution. If the control compute task is
unnecessarily delayed, some sensing data needs to wait longer before it is
processed by the control task. Hence, the control compute task needs prior-
ity for mapping and scheduling. The interplay between a compute-intensive
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control task and the data-intensive sensing task needs to be explored care-
fully. The SPADE flow can still be used, but the design-space exploration
(DSE) needs further scrutiny.

• Considering multiple applications including one or more IBC applications
sharing a platform is not explored in this thesis in detail. The current SPADE

flow takes a single IBC application as input. Multiple input applications give
additional optimisation options for mapping, controller design and schedul-
ing. A careful consideration of these optimisation options is needed for scal-
ability and performance. The SPADE flow extension for considering multi-
ple (IBC) applications is an interesting future work.

• The case study considered for demonstrating the current SPADE approach
assumes a single-input single-output (SISO) control system. Although the
SPADE theory allows in principle a design for multi-input multi-output
(MIMO) control systems, the technical challenges still need to be addressed.
A MIMO system, for instance, could have multiple sensors. This could mean
that the information is coming at multiple rates. A control mechanism to
deal with these multiple rates could also have implementation constraints.
And the mapping design space is enlarged. This is again an interesting di-
rection for future work.

• In this thesis, we have shown how multiple controller design methods can
be integrated with the SPADE approach. However, a rigorous analysis on
identifying the controller design technique that is optimal for a given appli-
cation and platform has not been done. This is another interesting direction
for future work.
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